تاثیر فشار و دما بر ترانزیستورهای اثر میدان با تحرک بالای الکترونی AlGaN/GaN

نوع مقاله : مقاله پژوهشی

نویسنده

گروه فیزیک، دانشگاه آزاد اسلامی، واحد خوی، خوی، ایران

چکیده

در این مقاله، جریان درین- سورس، رسانندگی متقابل و فرکانس قطع در ترانزیستورهای با تحرک پذیری بالای الکترونی AlGaN/GaN مورد بررسی قرار گرفته است. برای به دست آوردن دقیق پارامترهای ترانزیستورهای با تحرک بالای الکترونی (همت) AlGaN/GaN  مانند چگالی الکترون، عملکرد موج، گاف نواری، قطبش پذیری، جرم موثر و ثابت دی الکتریک؛ اثرات فشار هیدرواستاتیک و دما مورد بررسی قرار می گیرند. نتایج حاصله نشانگر این است که جریان درین-سورس با افزایش دمای کاهش می یابد و با افزایش فشار هیدرواستاتیکی افزایش می یابد. افزایش دما معادل یک گیت مجازی منفی و افزایش فشار هیدرواستاتیک برابر با ولتاژ گیت مجازی مثبت است. همچنین در ساختارهای HEMT وابستگی جرم مؤثر به دما و فشار هیدرواستاتیک بررسی شده است و مشاهده می شود که افزایش فشار هیدرواستاتیک جرم موثر و نفوذ تابع موج را به سد کوانتمی AlGaN کاهش می دهد. به طور کلی، فرایند افزایش و کاهش فرکانس قطع و رسانندگی متقابل مشابه تغییرات در جریان درین- سورس است. نتایج محاسبه شده با داده های تجربی موجود تطابق خوبی دارند.

کلیدواژه‌ها

[1] L. Rey, A. D. Latorre, F. F. M. Sabatti, J. D. Albrecht, and M. Sa. Lraniti, “Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors.” Applied Physics Letters, 111 (2017) 013506.
[2] J. Ma, E. Matioli, “Slanted tri-gates for high-voltage GaN power devices.” IEEE Electron Device Letters, 38b (2017) 1305.
[3] G. Tang, et al., “Digital integrated circuits on an E-mode GaN power HEMT platform.” IEEE Electron Device Letters, 38 (2017) 1282.
[4] M. Blaho, et al., “Annealing temperature, and bias-induced threshold voltage instabilities in integrated E/D-mode InAlN/GaN MOS HEMTs.” Applied Physics Letters, 111 (2017) 033506.
[5] K. Zhang, et al., “High-Linearity AlGaN/GaN FinFETs for Microwave Power Applications.” IEEE Electron Device Letters, 38 (2017) 615.
[6] H. Chiu, et al., “RF Performance of in Situ SiNx Gate Dielectric AlGaN/GaN MISHEMT on 6-in Silicon-On-Insulator Substrate.” IEEE Transactions on Electron Devices, 64 (2017) 4065.
[7] S. Sun, et al., “AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors with reduced leakage current and enhanced breakdown voltage using aluminum ion implantation.” Applied Physics Letters, 108 (2016) 013507.
[8] Z. Zhang, Q. Liao, Y. Yu, X. Wang, and Y. Zhang, “Enhanced photo response of ZnO Nano rods-based self-powered photo detector by piezotronic interface engineering.” Nano Energy, 9 (2014) 237.
[9] S. Yuan, B. Duan, X. Yuan, Z. Cao, H. Guo, and Y. Yang, “New Al0.25Ga0.75N/GaN high electron mobility transistor with partial etched AlGaN layer.” Superlattices and Microstructures, 93 (2016) 303.
[10] Y. Chang, Y. Zhang, Y. Zhang, “Thermal model for static current characteristics of AlGaN/GaN high electron mobility transistors including self-heating effect.” Journal of Applied Physics, 99 (2006) 044501.
[11] R. Yahyazadeh, A. Asgari, and M. Kalafi, “Effect of depletion layer on negative differential conductivity in AlGaN/GaN high electron mobility transistor.” Physica E, 33 (2006) 77.
[12] Rashmi, A. Kranti, S. Haldar, M. G. Gupta, et al., “Comprehensive analysis of small-signal parameters of fully strained and partially relaxed high Al-content lattice mismatched AlmGa1-mN/GaN HEMTs.” IEEE Trans on Microwave Theory Techniques, 52 (2003) 607.
[13] P. Cui, et al., “Influence of different gate biases and gate lengths on parasitic source access resistance in AlGaN/GaN heterostructure FETs.” IEEE Transactions on Electron Devices, 64 (2017) 1038.
[14] I. Vurgaftman, J. R Meyer, L. R. R Mohan, “Band parameters for III–V compound semiconductors and their alloys.” Journal of Applied Physics, 89 (2001) 5815.
[15] K. J. Bala, A. J Peter, and C. W Lee, “Simultaneous effects of pressure and temperature on the optical transition energies in a Ga0.7In0.3N/GaN quantum ring.” Chemical Physics, 495 (2017) 42.
[16] N. E. Christensen, I. Gorczyca. “Optical and structural properties of III-V nitrides under pressure.” Physical Review B, 50 (1994) 4397.
[17] Z. Dridi, B. Bouhafs, Ruterana. “Pressure dependence of energy band gaps for AlxGa1−xN, InxGa1−xN and InxAl1−xN.” New Journal of Physics, (2002) 94.1.
[18] O. Ambacher , A. B Foutz, J Smart, J. R. Shealy, N. G. Weimann, K. Chu et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures.” Journal of Applied Physics, 87 (2000) 334.
[19] O. Ambacher, J. Majewski, C. Miskys, et al., “Pyroelectric properties of Al (In) GaN/GaN hetero- and quantum well structures.” Journal of Physics: Condensed Matter, 14 (2002) 3399.
[20] Z. J. Feng, Z. J. Cheng, and H. Yue. “Temperature dependence of Hall electron density of GaN-based heterostructures.” Chinese Physics, 13 (2004) 1334.
[21] V. Fiorentini, F. Bernardini, O. Ambacher, “Evidence for nonlinear macroscopic polarization in III–V nitride alloy Heterostructures.” Applied Physics Letters, 80 (2002) 1204.
[22] P. Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, N. W. Cheung, and E. R. Weber, “Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate.” Journal of Applied Physics, 85 (1999) 2385.
[23] K. Elibol, G. Atmaca, P. Tasli, and S. B. Lisesivdin, “A numerical study on subband of InxAl1-xN/InN-based HEMT structure with low-indum (x / < 0.01) barrier layer.” Solid state communication, 162 (2013) 8.
[24] R. Yahyazadeh, Analytical-numerical model for sheet resistance of  AlxGa1-XN/GaN high electron mobility transistors, Journal of Non-Oxide Glasses, 10 (2018) 57.
[25] P. Roblin, H. Rahdin, “High-speed Heterostructure Devices from Device Concepts to Circuit Modeling.” Cambridge University Press, Cambridge (2002) 277.
[26] A. Agrawal, M .Gupta, R. S. Gupta, “RF performance assessment of AlGaN/GaN MISHFET at high temperatures for improved power and pinch‐off characteristics.” Microwave and Optical Technology Letters, 51 (2009) 1942.
[27] C. M. Duque, A. L. Morales, M. E. Mora-Ramos, and C. A. Duque, “Exciton-related optical properties in zinc-blende GaN/InGaN quantum wells under hydrostatic pressure.” Physica Status Solidi (b), 252 (2015) 670.
[28] M. Yang et al., “Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs.” IEEE Transactions Electron Devices, 63 (2016) 1471.
[29] L. Hsu, W. Walukiewicz, “Effect of polarization fields on transport properties in AlGaN/GaN heterostructures.” Journal of Applied Physics, 89 (2001) 1783.
[30] H. Yu, K. F. Brennan, “Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures.” Journal of Applied Physics, 89 (2001) 3827.
[31] R. Yahyazadeh, “Effect of Temperature on the Total Mobility of AlGaN/GaN High Electron Mobility Transistors.” ECS Transactions, 60 (2014) 1051.
[32] L. Yang et al., “Enhanced gm and fT with High Johnson’s Figure-of-Merit in Tin Barrier AlGaN/GaN HEMTs by TiN-Based Source Contact Ledge.” IEEE Electron Device Letters, 38 (2017) 1563.
[33] A. Asgari, M. Kalafi, and L. Faraone, “Effects of partially occupied sub-bands on two-dimensional AlxGa1−xN/GaN Heterostructures.” Journal of Applied Physics, 95 (2004) 1185.
[34] T. Palacios, et al., “Influence of the dynamic access resistance in the gm and ft. linearity of AlGaN/GaN HEMTs.” IEEE Transactions on Electron Devices, 52 (2005) 2117.
[35] M. Yang et al., “Effect of polarization coulomb field scattering on parasitic source access resistance and extrinsic transconductance in AlGaN/GaN heterostructure FETs.” IEEE Transactions on Electron Devices, 63 (2016) 1471.
[36] Y. Chang, Y. Zhang, and Yu. Zhang. “A thermal model for static current characteristics of AlGaN/GaN high electron mobility transistors including self-heating effect.” Journal of Applied Physics, 99 (2006) 044501.
[37] J. C. Freeman, Channel temperature model for microwave AlGaN/GaN power HEMTs on SiC and sapphire, IEEE MTT-S International Microwave Symposium Digest, 3 (2004) 2031.
[38] C. Anghel, A. M. Lonescu, N. Hefyene, R. Gillon, European Solid-State Device Research, 33rd Conference on. ESSDERC ‘03, (2003) 449.
[39] W. Jin, W. Liu, S. K. H. Fung, P. C. H. Chan, and C. Hu, “SOI thermal impedance extraction methodology and its significance for circuit simulation.” IEEE Transactions on Electron Devices, 48 (2001) 730.
[40] T. H. Yu, K. F. Brennan, “Theoretical study of a GaN-AlGaN high electron mobility transistor including a nonlinear polarization model.” IEEE Transactions on Electron Devices, 50 (2003) 315.
[41] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek,S. P. Denbaars, and U. K. Mishra, “Bias Dependent Microwave Performance of AlGaN/GaN MODFET’s Up To 100 V.” IEEE Electron Device Letters, 18 (1997) 290.
[42] S. Turuvekere, et al., “Gate leakage mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison an modeling” IEEE Transactions on Electron Devices, 60 (2013) 3157.