نیروی حلالیت مایع مولکولی بیضی وار سخت با برهم کنش میله- کره و میله- سطح

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشکده علوم پایه، دانشگاه یاسوج، یاسوج، ایران

چکیده

در کار قبلی ، یکی از ما با استفاده از برهمکنش دیواره سخت- سوزن سخت و معادله غیرخطی پیشنهادی گریمسون- ریکیزن ، نیروی حلالیت مایع بیضی وار سخت با پتانسیل همپوشانی گاوسی سخت را محاسبه کرد. در کار حاضر، با استفاده از نظریه تابعی چگالی و مدل جهت دارتعمیم یافته، نیروی حلالیت مایع بیضی وار سخت در حضور برهم کنش های واقعی تر میله- کره و میله- سطح محاسبه می شود. ما قدرت جفت شدگی ضعیف و قوی مولکول- سطح را بررسی می کنیم. اثر فاصله کلوئیدها روی پروفایل های چگالی محاسبه می شود. ما نتوانستیم نتایج دقیق یا شبیه سازی مربوط به این برهم کنش ها را برای مقایسه پیدا کنیم. نتایج با نیروی حلالیت مایع همپوشان گائوسی سخت با برهمکنش سوزن سخت- دیواره سخت برای حالت k=3.0 مقایسه می شوند. نتایج از نظر کیفی مطابقت دارند.

کلیدواژه‌ها

موضوعات

[1] J.N. Israelachvili. Intermolecular and Surface Forces. Second Ed. Academic Press, London, 1992.
[2] R.G. Horn, J.N. Israelachvili, E. Perez, "Forces Due to Structure in a Thin Liquid Crystal Film." Journal de Physique, 42 (1981) 39.
[3] M.L. Gee, P.M. McGuiggan, J.N. Israelachvili, et al., "Liquid to Solid-Like Transitions of Molecularly Thin Films under Shear." Journal of Chemical Physics, 93 (1990) 1895.
[4] J. Klein, E. Kumacheva, "Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions." Journal of Chemical Physics, 108 (1998) 6996.
[5] L.J. Demirel, S. Granick," Origins of solidification when a simple molecular fluid is confined between two plates." Journal of Chemical Physics, 115 (2001) 1498.
[6] R. Lim, S.F.Y. Li, S.J. O'Shea, "Solvation forces using sample-modulation atomic force microscopy." Langmuir, 18 (2002) 6116.
[7] N.N. Gosvami, "Solvation Forces and Contact Mechanics at the Nanometer Scale in Molecular Liquids." Ph. D Thesis, Singapore: National University of Singapore; 2008.
[8] N.N. Gosvami, W. Hofbauer, S.J. O’Shea, S.K. Sinha, "Solvation and squeeze out of hexadecane on graphite." Journal of Chemical Physics, 126 (2007) 214708.
[9] S. de Beer, D. van den Ende, F. Mugele, "Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy." Nanotechnology, 21 (2010) 325703.
[10] A. Malani, K.G. Ayappa, "Confined fluids in a Janus pore: influence of surface asymmetry on structure and solvation forces." Molecular Simulation, 38 (2012) 1114.
[11] P. Attard, J.L. Parker, "Oscillatory Solvation Forces: a Comparison of Theory and Experiment." Journal of Chemical Physics, 96 (1992) 5086.
[12] C.N. Patra, S.K. Ghosh, "Weighted-density-functional theory of solvation forces in liquids." Physical Review E, 49 (1994) 2826.
[13] M. Moradi, M. Kavosh Tehrani M, "Solvation forces in Lenard Jones and Stockmayer fluid at various temperatures." Iranian Journal of Science and Technology, Transactions A: Science, 25 (2001) 377.
[14] K. Yang, Y. Lin, X. Lu, A.V. Neimark, "Solvation forces between molecularly rough surfaces." Journal of Colloid and Interface Science, 362 (2011) 382.
[15] M.J. Grimson, G. Rickayzen, "Linear and nonlinear theories of solvation forces in fluids." Molecular Physics, 42 (1981) 767.
[16] J.G. Gay, B.J. Berne, "Modification of the overlap potential to mimic a linear site– site potential." Journal of Chemical Physics, 74 (1981) 3316.
[17] R. Everaers, M.R. Ejtehadi, "Interaction potentials for soft and hard ellipsoids." Physical Review E, 67 (2003) 041710.
[18] M. Schoen, T. Gruhn, D.J. Diestler, "Solvation forces in thin films confined between macroscopically curved substrates." Journal of Chemical Physics, 109 (1998) 301.
[19] T. Gruhn, M. Schoen, "A grand canonical ensemble Monte Carlo study of confined planar and homeotropically anchored Gay-Berne films", Molecular Physics, 93 (1998) 681.
[20] S. Kondrat, A. Poniewierski, L. Harnau, "Orientational phase transition and the solvation force in a nematic liquid crystal confined between inhomogeneous substrates." European Physical Journal E, 10 (2003) 163.
[21] Z. Ordibeheshti, A. Aavazpour, E. Sadeghi, et al., "Solvation force in hard ellipsoid fluids with HNW interaction." Molecular Physics, 114 (2014) 2023.
[22] F. Barmes, D.J. Cleaver, "Computer simulation of a liquid-crystal anchoring transition." Physical Review E, 69 (2004) 061705.
[23] F. Barmes F, D.J. Cleaver, "Using particle shape to induce tilted and bistable liquid crystal anchoring." Physical Review E, 71 (2005) 021705.
[24] J.P. Hansen, I.R. Mc Donald. Theory of Simple Liquids. 4th Ed. Academic Press, London, 2013.
[25] M. Moradi, B. B. Ghotbabadi and R. Aliabadi, "The study of uniaxial–biaxial phase transition of confined hard ellipsoids using density functional theory." International Journal of Modern Physics C, 28 (2017) 1750068.
[26] E. Velasco and L. Mederos, "A theory for the liquid-crystalline phase behavior of the Gay–Berne model." Journal of Chemical Physics, 109 (1998) 2361.
[27] E. Velasco, A. M. Somoza and L. Mederos, "Liquid‐crystal phase diagram of the Gay–Berne fluid by perturbation theory." Journal of Chemical Physics, 102 (1995) 8107.
[28] M. P. Allen, "Molecular simulation and theory of liquid crystal surface anchoring." Molecular Physics, 96 (1999) 1391.
[29] L. Onsager, "The effects of shape on the interaction of colloidal particles." Annals of the New York Academy of Sciences, 51 (1949) 627.
[30] P. Kalpaxis and G. Rickayzen, "Structure of a confined fluid of hard ellipsoids." Molecular Physics, 80 (1993) 391.
[31] P.I.C.Teixeira, "Nematic liquid crystal order reconstruction in ultraconfinement, from density-functional theory." Liquid Crystals, 43 (2016) 1526.
[32] G. Rickayzen, "Phase transitions in molecular fluids: The restricted orientation model." Molecular Physics, 80 (1993) 1093.
[33] R. Aliabadi1, P. Gurin, E. Velasco and S. Varga, "Ordering transitions of weakly anisotropic hard rods in narrow slit-like pores." Physical Review E, 97 (2018) 012703.
[34] P. Gurin, S. Varga, Y. Martínez-Ratón and E. Velasco, "Positional ordering of hard adsorbate particles in tubular nanopores." Physical Review E, 97 (2018) 052606.
[35] G. Rickayzen, "A model for the study of the structure of hard molecular fluids." Molecular Physics, 95 (1998) 393.
[36] M. Moradi, Richard J. Weatley, A. Avazpour, "Density functional theory of liquid crystals and surface anchoring." Physical Review E, 72 (2005) 061706.
[37] M. Moradi, Richard J. Weatley, A. Avazpour, "Density profile and order parameter of a hard ellipsoidal fluid confined to a slit." Journal of Physics: Condensed Matter, 17 (2005) 5625.
[38] A. Avazpour, M. Moradi, "The direct correlation functions of hard Gaussian overlap and hard ellipsoidal fluids." Physica B: Condensed Matter, 392 (2007) 242.
[39] A. Avazpour, L. Avazpour, " Density functional theory of liquid crystals and surface anchoring: Hard Gaussian overlap-sphere and hard Gaussian overlap-surface potentials." Journal of Chemical Physics, 133 (2010) 244701.
[40] M. Moradi, A. Avazpou, "Density profiles of a hard Gaussian overlap fluid between hard walls." International Journal of Modern Physics B, 19 (2005) 1717.
[41] M.J. Grimson, G. Rickayzen, "Solvation forces in charged fluids." Molecular Physics, 45 (1982) 221.
[42] W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al. Numerical Recipes in Fortran 90. Second Ed. Cambridge University Press, New York (NY), 1992.
[43] L.S. Ornestin, F. Zernike, "Accidental deviations of density and opalescence at the critical point of a single substance." KNAW, Proceedings, 17 (1914) 793.
[44] J.F. Marko, "First-order phase transitions in the hard-ellipsoid fluid from variationally optimized direct pair correlations." Physical Review A, 39 (1989) 2050.