تأثیر pH بر گاف نواری لایه های نازک سلنید سرب و بررسی فعالیت فوتوکاتالیستی

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

ساده لایه نشانی حمام شیمیایی (CBD) شد که از لحاظ تجاری پیش ماده های ارزان و در دسترسی دارد. در روش لایه نشانی حمام بخار شیمیایی، عوامل ساخت نقش قابل ملاحظه ای را ایفا کرده و خصلت محصول نهایی را تعیین می کنند. در این پژوهش، تأثیر دوعامل مهم، pH عامل کمپلکس ساز و زمان لایه نشانی بر کیفیت پیکربندی و ساختار و گاف نواری اپتیکی لایه نازک سلنید سرب مورد بررسی قرار گرفته شد. این عوامل ساخت طوری تنظیم شده اند تا لایه نازک نیمه رسانای سلنید سرب گاف نواری تقریبی eV 4/1 داشته باشد و بدین ترتیب مناسب استفاده در سلول خورشیدی نقطه کوانتومی باشد. لایه های مذکور توسط پراش پرتو (XRD) X برای تعیین ساختار و بلورینگی، میکرسکوپ الکترونی روبشی (SEM) به منظور ریخت شناسی و توزیع اندازه ذرات و اسپکتروسکوپی مرئی-فرابنفش برای تعیین میزان جذب و گاف انرژی نواری نوری (UV-Vis) مشخصه یابی شدند. تغییر در pH عامل کمپلکس ساز، گاف انرژی نواری را از 56/3 تا 4/1 الکترون ولت تغییر داد. رفتار فوتوکاتالیستی لایه نازک سلنید سرب به منظور از بین بردن آلودگی Congo Red تحت نور مرئی مورد آزمایش قرار گرفته شد و فعالیت این فوتوکاتالیست در اکسید کردن آلودگی مناسب ارزیابی شد.

کلیدواژه‌ها

موضوعات

[1] P. Granitzer, and K. Rumpf, "Nanostructured Semiconductors: From Basic Research to Applications." Pan Stanford Publishing, 2014.
[2] G. C. Yi, "Semiconductor Nanostructures for Optoelectronic Devices: Processing, Characterization and Applications." Springer Berlin Heidelberg, 2012.
[3] B. Thangaraju, and P. Kaliannan, "Spray pyrolytically deposited PbS thin films." Semiconductor Science and Technology, 15 (2000) 849.
[4] D. N. Gujarathi, and J. V. Dhanvij, Electrical and Optical Properties of Lead Selenide Thin Films by Chemical Bath Deposition.
[5] E. M. El-Menyawy, G. M. Mahmoud, R. S. Ibrahim, F. S. Terra, H. El-Zahed, I. K. El Zawawi, "Structural, optical and electrical properties of PbS and PbSe quantum dot thin films." Journal of Material Science: Materials in Electronics, 27 (2016) 10070.
[6] K. C. Preetha, T. L. Remadevi, "Band gap engineering in PbSe thin films from near-infrared to visible region by photochemical deposition." Journal of Material Science: Materials in Electronics, 25 (2014) 1783.
[7] T. S. Bhat, S. A. Vanalakar, R. S. Devan, S. S. Mali, S. A. Pawar, Y. R. Ma, C. K. Hong, J. H. Kim, and P. S. Patil, "Compact nanoarchitectures of lead selenide via successive ionic layer adsorption and reaction towards optoelectronic devices," Journal of Materials Science: Materials in Electronics, 27 (2016) 4996.
[8] Z. Hens, E. S. Kooij, G. Allan, B. Grandidier, and D. Vanmaekelbergh, "Electrodeposited nanocrystalline PbSe quantum wells: synthesis, electrical and optical properties," Nanotechnology, 16 (2005) 339.
[9] S. J. Kim, and S. U. o. N. Y. a. B. E. "Engineering, Nanostructured Photovoltaic Devices for Next Generation Solar Cell." State University of New York at Buffalo, 2008.
[10] S. Kumar, T. P. Sharma, M. Zulfequar, and M. Husain, "Characterization of vacuum evaporated PbS thin films." Physica B: Condensed Matter 325 (2003) 8.
[11] D. Lincot, G. Hodes, and E. S. E. Division, "Chemical Solution Deposition of Semiconducting and Non-metallic Films: Proceedings of the International Symposium." Electrochemical Society, 2006.
[12] R. S. Mane, and C. D. Lokhande, "Chemical deposition method for metal chalcogenide thin films." Materials Chemistry and Physics 65 (2000) 1.
[13] J. J. Choi, Y.-F. Lim, M. E. B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A. C. Bartnik, A. Goedhart, G. G. Malliaras, H. D. Abruña, F. W. Wise, and T. Hanrath, "PbSe Nanocrystal Excitonic Solar Cells." Nano Letters 9 (2009) 3749.
[14] P. V. Kamat, "Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters." The Journal of Physical Chemistry C, 112 (2008) 18737.
[15] W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, "Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals." Nano Letters, 9 (2009) 1699.
[16] H. Dang, "Nanostructured Semiconductor Device Design in Solar Cells." University of Kentucky, 2015.
[17] E. H. Sargent, "Infrared Quantum Dots." Advanced Materials, 17 (2005) 515.
[18] K. Mertens, "Photovoltaics: Fundamentals, Technology and Practice." Wiley, 2013.
[19] J. Zhang, J. Gao, C. P. Church, E. M. Miller, J. M. Luther, V. I. Klimov, and M. C. Beard, "PbSe Quantum Dot Solar Cells with More than 6% Efficiency Fabricated in Ambient Atmosphere." Nano Letters, 14 (2014) 6010.
[20] L. Brus, "Quantum crystallites and nonlinear optics." Applied Physics A, 53 (1991) 465.
[21] G. Hodes, "Chemical Solution Deposition of Semiconductor Films." Taylor & Francis, 2002.
[22] J. Tauc, and A. Menth, "States in the gap." Journal of Non-Crystalline Solids, 8 (1972) 569.
[23] N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, "Effects of substrate temperature on the properties of sputtered TiN thin films." Journal of Material Science: Materials in Electronics, 27 (2016) 2800.
[24] N. Ghobadi, M. Ganji, C. Luna, A. Arman, A. Ahmadpourian, "The effects of DC power on the physical properties and surface topography of sputtered TiN nanostructured thin films." Optical and Quant Electron, 48 (2016) 467.
[25] N. Ghobadi. “Derivation of ineffective thickness method for investigation of the exact behavior of the optical transitions in nanostructured thin films.” Journal of Material Science: Materials in Electronics, 27 (2016) 8951.
[26] JinKuang Dong, Haiyan Xu, FengJun Zhang, Chen Chen, Li Liu, GuoTian Wu, “Synergistic effect over photocatalytic active Cu2O thin films and their morphological and orientational transformation under visible light irradiation.” Applied Catalysis A: General 470 (2014) 294.