اثر تابش فرابنفش بر روی زیر لایه ی پلی کربنات برای انباشت فیلم های نازک TiO2

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

در این مقاله، پیش پردازش تابش اشعه فرابنفش دردزهای مختلف   با هدف فعال سازی سطوح پلی­کربنات قبل از پوشش جهت دستیابی به پوشش موثر  لایه نازک تیتانیوم دی اکسید همگن انجام گرفت. لایه های نازک دی­اکسیدتیتانیوم نانوکریستال بر پایه روش سل-ژل با بکارگیری تترابوتیل-تیتانات به عنوان پیش ماده آماده شدند. لایه های نازک دی­اکسیدتیتانیوم  نانوکریستال با روش لایه نشانی چرخشی  بر روی زیر لایه های پردازش شده انباشته گردید. برخی شیوه های تعیین مشخصات همچون بیناب نمایی مرئی-فرابنفش، بیناب نمایی  FTIR و اندازه گیری زاویه تماس جهت مطالعه تغییرات ایجاد شده بر روی خواص زیر لایه های پردازش شده مورد استفاده قرار گرفتند.بیناب نمایی  FTIRو طیف ماوراءبنفش بدست آمده از لایه ها قبل و بعد ازپردازش با تابش ماوراءبنفش حاکی از آن است که تابش ماوراءبنفش تغییرات شیمیایی و فیزیکی در سطح ایجاد کرده است. زاویه تماس سطح پلی­کربنات 94درجه بود که این مقدار بعد از پردازش به طرز قابل توجه ای کاهش یافت.الگوی XRD نشان می­دهد که لایه نازک دی­اکسیدتیتانیوم ساختاری بلورین داردوفازهای بلوری آناتازو روتایل هستند. طبق بیناب  مرئی-فرابنفشگرفته شده از نمونه ها، لایه های آماده شده عبور بالایی دارند.  نتایج ریخت شناسی سطح بدست آمده با AFM نشان می دهند که افزایش زمان پرتودهی منجر به تغییر در  ناهمواری لایه های نازک نانو دی­اکسیدتیتانیوم می­گردد.

کلیدواژه‌ها

موضوعات

[1] Y. Hoon La, S. Hyeok Im, N. Jin Kim, B. Ki Ryu. “Optical and structural properties of Fe–TiO2 thin films prepared by sol-gel dip coating.” Thin Solid Films, 518 (2010) 156.
[2] G. J. Han, W. Lan, X.Q. Liu, Q. Su, G.Q. Wang, Y.Wan. “Effect of Nb doping on the phase transition and optical properties of sol–gel TiO2 thin films.” Journal of Alloys and Compounds, 509 (2011) 4150.
[3] P. Chrysicopoulou, D. Davazoglou, G. Kordas, Chr. Trapalis. “Optical properties of very thin (<100 nm) sol–gel TiO2 films.” Thin Solid Films, 323 (1998) 188.
[4] L. Lopez, W. A. Daoud, D. Dutta. “Preparation of large scale photocatalytic TiO2 films by the sol–gel process.” Surface & Coatings Technology, 205 (2010) 251.
[5] W. Que, A. Uddin, X. Hu. “Thin film TiO2 electrodes derived by sol–gel process for photovoltaic applications.” Journal of Power Sources, 159 (2006) 353.
[6] A. Verma, S. B. Samanta, A. K. Bakhshi, S. A. Agnihotry. “Effect of stabilizer on structural, optical and electrochemical properties of sol–gel derived spin coated TiO2 films.” Solar Energy Materials & Solar Cells, 88 (2005) 47.
[7] C. M. Firdaus, M. S. B. Shah Rizamb, M. Rusop, S. Rahmatul Hidayah. “Characterization of ZnO and ZnO: TiO2 Thin Films Prepared by Sol-Gel Spray-Spin Coating Technique.” Procedia Engineering, 41 (2012) 1367.
[8] M. Ozdemir, H. Sadikoglu. “A new and emerging technology: Laser- induced surface modification of polymers.” Trends in Food Science & Technology, 9 (1998) 159.
[9] H. Yaghoubi, N. Taghavinia, E. Keshavarz Alamdari. “Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties.” Surface & Coatings Technology. 204 (2010) 1562.
[10] Xi. Pei, Q. Wang. “Ultraviolet irradiation induced changes in the surface of phenolphthalein poly (ether sulfone) film.” Applied Surface Science, 253 (2007) 4550.
[11] K. Hareesh, A.K. Pandey, Y. Sangappa, R. Bhat, A. Venkataraman, G. Sanjeev. “Changes in the properties of Lexan polycarbonate by UV irradiation.” Nuclear Instruments and Methods in Physics Research B, 295 (2013) 61.
[12] S. Wei Lam, A. Soetanto, R. Amal. “Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles.” J Nanopart Res. 11 (2009) 1971.
[13] J. H. Yang, Y. S. Han, J. H. Choy. “TiO2 thin-films on polymer substrates and their photocatalytic activity.” Thin Solid Films, 495 (2006) 266.
[14] B. Jaleh, N.Shahbazi. “Surface properties of UV irradiated PC–TiO2 nanocomposite film.” Applied Surface Science, 313 (2014) 251.
[15] C. Su, B. Y. Hong, C. M. Tseng. “Sol–gel preparation and photocatalysis of titanium dioxide.” Catalysis Today, 96 (2004) 119.
[16] G. F. Tjandraatmadja, L.S. Burn, M.C. Jollands. “, Evaluation of commercial polycarbonate optical properties after QUV-A radiation—the role of humidity in photodegradation.” Polymer Degradation and Stability, 78 (2002) 435.
[17] S. Pimanpang, Pei. I. Wang, J. J. Senkevich, G. C. Wang, T. M. Lu. “Effect of hydrophilic group on water droplet contact angles on surfaces of acid modified SiLK and Parylene polymers.” Colloids and Surfaces A: Physicochem. Engineering Aspects, 278 (2006) 53.
[18] Zs. Geretovszky, B. Hopp, I. Bertoti, I. W. Boyd. “Photodegradation of polycarbonate under narrow band irradiation at 172 nm.” Applied Surface Science, 186 (2002) 85.
[19] S. Asad Ali, R. Kumar, F. Singh, P. K. Kulriya, R. Prasad. “Study of modifications in Lexan polycarbonate induced by swift O6+ ion irradiation.”
Nuclear Instruments and Methods in Physics Research B, 268 (2010) 1813.
[20] A. Ramazani, S. A. Mousavi, E. Seyedjafari, R. Poursalehi, Sh. Sareh, K. Silakhori, A. A. Poorfatollah, A. N. Shamkhali. “Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation.” Materials Science and Engineering C, 29 (2009) 1491.
[21] B. Jaleh, P. Parvin, N. Sheikh, M. Hajivaliei, E. Hasani. “Surface modification of Lexan treated by RF plasma.” Surface & Coatings Technology, 203 (2009) 2759.
[22] A. P. Xagas, E. Androulaki, A. Hiskia, P. Falaras. “Preparation, fractal surface morphology and photocatalytic properties of TiO2 films.” Thin Solid Films, 357 (1999) 173.
[23] M. Ren, H. Yin, Zh. Lu, A. Wang, L. Yu, T. Jiang. “Evolution of rutile TiO2 coating layers on lamellar sericite surface induced by Sn4+ and the pigmentary properties.” Powder Technology, 204 (2010) 249.
[24] J. Wang, P. Xu, X. Li, J. Shen, G. Wu, B. Zhou. “Optical Properties of Sol-Gel Coatings on Plastic Foils Embossed with Surface-Relief Gratings.” J. Sol-Gel Science and Technology, 23 (2002) 73.
[25] M.I.B. Bernardi, E.J.H. Lee, P.N. Lisboa-Filho, E.R. Leite, E. Longo, J.A Varela. “TiO2 Thin Film Growth Using the MOCVD Method.” Materials Research, 4 (2001) 223.