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When two solids are squeezed together, they generally do not make atomic contact 
everywhere within the nominal contact area. This fact should be considered in many 
technological applications due to its enormous practical implications. In this paper, we 
briefly review Persson's contact mechanics and then review an extended version of 
Persson's contact mechanics. In the extended version, we take in to account two solid 
surfaces which are rough before calculating the effects of surface roughness’s of two 
solids on the area of real contact, adhesion, friction, and interfacial separation. We show 
that these values strongly depend on the roughness of two solids and the cross-
correlation between them. Therefore, we present that there is no general mapping 
between systems of both surfaces being rough and self-similar, and those with only one 
surface being rough and self-similar. 

1 Introduction 

 All surfaces occurring in nature and industry are rough, 
provided they are observed with sufficiently high 
magnifications (small length scales) [1-8]. So, for two 
contacting solid surfaces, microscopically there are 
many non-contact regions (the interfacial separation), 
and microscopic contact occurs only at a fraction of the 
macroscopic contact. This fraction of real contact, as 
well as the interfacial separation, are affected by the 
roughness of the surfaces and play important roles in the 
mechanical properties of the system. The area of real 
contact characterizes the frictional properties of the 
contact, as well as the strength of adhesion and the 
amount of wear [3-5]. Some other phenomena are 
affected by the interfacial separation: heat transfer, 
contact resistivity, lubrication, and sealing [5-8]. 

 The first study on the contact mechanics of two elastic 
bodies has been presented by Hertz [9], where, the 

roughness had been introduced by a set of asperities 
with equally high and identical radii of curvature. 
Greenwood and Williamson [10] have studied the effect 
of roughness on the contact between a surface and a 
rough surface. They have assumed that roughness has 
asperities with spherical summits of identical radius 
with a Gaussian distribution of heights. In reality, 
however, most of the surfaces are rough on many 
different length scales. In the contact mechanics theory 
of Persson, the limitations of the above models have 
been addressed. In that theory, solids have randomly 
rough, self-affine fractal surfaces on many length scales 
[11-26] and the probability distribution of the contact 
pressure is shown to be governed by a diffusive process 
in terms of the magnification at the interface. In all of 
these works, the area of real contact between a smooth 
elastic solid surface and a hard substrate with randomly 
rough surface have been studied. However, there are 
essentially no surfaces which are smooth on atomic 
scales. Therefore, the elastic solid should be assumed to 
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have a rough surface as well. The effect of roughness of 
the elastic solid on the area of real contact, adhesion, 
friction, and the interfacial separation is studied in Refs. 
[27-29] by an extended version of Persson's model of 
contact mechanics. 

 In studying the contact of elastic solids with rough 
surfaces, the contact stresses would depend on the shape 
of the gap between the surfaces before loading. That is, 
if the height fluctuations of the surfaces are h1 and h2, it 
is (h2 - h1) that matters. It could seem then, that one 
could keep one of the surfaces (say the soft one) smooth, 
and consider only the other surface rough, with a 
fluctuation height equal to (h2 - h1) [1, 2, 5, 12, 13]. The 
point is that normally h1 and h2 are described each by a 
single set of three parameters: the Hurst exponent, the 
correlation length, and the root-mean-square roughness 
(assuming the surfaces to be self-similar). The two sets 
corresponding to the two surfaces are in general 
different from each other. Hence the relative roughness 
(h2 - h1) is normally not like the roughness of a single 
self-similar surface: it has two kinds of Hurst exponents, 
correlation lengths, and root mean-square roughness, 
not characteristic of a single surface [27-29]. So, the 
two-rough surface system is equivalent to a single-
rough-surface, only if one of the rough surfaces in the 
latter system is not restricted to a self-similar surface. 

 This paper is organized as follows: Section 2 is a 
review of Persson's contact theory between a smooth 
elastic surface and a hard rough surface. In section 3, an 
extended version of this model is used to calculate the 
adhesive contact, non-adhesive contact, interfacial 
separation, and hysteretic friction when both contacting 
surfaces are randomly rough. Section 4 presents the 
numerical results for the extended version and compares 
the differences between Persson's contact theory and the 
extended version. Section 5 is devoted to the concluding 
remarks. 

 2 Persson's contact theory between a 
smooth elastic surface and a hard rough 
surface 

 In this section the main equations of Persson's contact 
mechanics theory are reviewed. In this theory, the 

interfacial is studied at different magnifications ζ = 
(L/λ) where L is the linear size of the system and λ is 
the length scale. The wave numbers are defined as q = 
(2π/λ) and qL = (2π/L) so that ζ = (q/qL). Persson focuses 
on the probability distribution P(σ, ζ) of the normal 
stress at the interface under the magnification ζ. For full 
contact the stress probability distribution P(σ, ζ) 
satisfies the differential equation [13]: 

𝜕𝑃

𝜕𝜁
= 𝑓(𝜁)

𝜕ଶ𝑃

𝜕𝜎ଶ
 ,                                                              (1) 

where σ is the interfacial stress in the apparent contact 
area at the magnification ζ.  f is the diffusivity function: 

𝑓(𝜁) =  
1

2
 
< (∆𝜎௭)ଶ >

∆𝜁
=  

𝜋

4
 𝐸∗ଶ𝑞  𝑞ଷ   𝐶(𝑞),          (2) 

𝐸∗ =
𝐸

(1 − 𝜈ଶ)
 ,                                                                (3) 

where <...> stands for the ensemble average, and 𝐸∗  is 
the effective elastic modulus. E and ν are the elastic 
modulus and the Poisson ratio, respectively. C is the 
Fourier transform of the correlation of heights at 
different locations: 

𝐶(𝒒) =  
1

(2𝜋)ଶ
 න 𝑑ଶ𝑥 < ℎ(𝒙)ℎ(𝟎) > 𝑒ି 𝒒.𝒙,          (4) 

where h(x) is the rough substrate height distribution,      
x = (x, y) is the in-plane position vector. It is assumed 
that Eq. (1) and Eq. (2) are correct for partial contact, 
and to account for partial contact the following initial 
and boundary conditions are introduced. 
 
𝑃(𝜎, 1) =  𝛿(𝜎 − 𝜎), 

𝑃(−𝜎 , ζ  ) = 0, 

𝑃(∞, ζ) = 0,                                                                       (5) 

where 𝜎 > 0 is the largest tensile stress possible. The 
detachment stress 𝜎(ζ) depends on the magnification 
and can be related to the effective interfacial energy 
(per unit area)  γ

ୣ
(ζ) [14, 25, 26]: 

𝜎(𝜁)  ≈ ቈ
𝛾(𝜁)𝐸𝑞

1 − 𝜈ଶ 

ଵ/ଶ

,                                              (6) 
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−𝛾(𝜁) 𝐴(𝜁) = 𝑈ௗ(𝜁) + 𝑈(𝜁).                            (7) 

A(ζ) is the apparent contact area at the magnification ζ. 
The relative contact area (at the magnification ζ is given 
by [14] 

 
𝐴(𝜁)

𝐴
= 𝑃(𝜁),      

𝑃(𝜁) = 1 − න 𝑑𝜁 ′ 𝑆൫𝜁′൯,                                               (8)


ଵ

  

where S(𝜁) is obtained from the integral equation: 

exp ቊ−
[𝜎(𝜁) + 𝜎]ଶ

4𝑎(𝜁)
ቋ

= න 𝑑𝜁 ′ 𝑆൫𝜁′൯ 
𝑎(𝜁)

𝑎(𝜁) − 𝑎(𝜁′)
൨

ଵ/ଶ

ଵ

×  exp ൝−
ൣ𝜎(𝜁) − 𝜎(𝜁′)൧

ଶ

4[𝑎(𝜁) − 𝑎(𝜁′)]
ൡ, 

𝑎(𝜁) = න 𝑑𝜁 ′ 𝑓൫𝜁 ′൯.                                                        (9)


ଵ

 

This is numerically solved for 𝑆(𝜁). 𝑈(𝜁) is the elastic 
energy stored at the interface due to the elastic 
deformation of the solids at length scales shorter than λ 
= (L/ζ). From [16, 18]: 
 

𝑈(𝜁) ≈
𝜋

2
𝐴𝐸∗𝛼 න 𝑑𝑞 𝑞ଶ𝐶(𝑞)𝑃(𝑞),

ೌ

ಽ

                 (10) 

where 𝑞 and 𝑞 are the smallest and the largest surface 
roughness wave numbers, corresponding to L (the size 
of the system) and a (the lattice spacing of the blocks), 
respectively. Under the nominal stress 𝜎, the surface 
asperities do not, in general, fully penetrate inside the 
elastic block where the contact between the substrate 
and the elastic block is not full. Hence the auto-spectral 
density function does not contribute in full to the elastic 
energy stored at the interface. This aspect is taken into 
account in Eq. (10) through the factor αP(q). α is less 
than one (but of the order one), when the squeezing 
pressures are small this factor takes into account the fact 
that the elastic energy stored in the contact region is less 
than the average elastic energy for full contact [30]. For 
full contact P(q) = 1 (A = A0), and α = 1. The adhesion 

energy 𝑈(𝜁) is assumed to be proportional to the 
apparent contact area and is calculated as [14]: 

𝑈ௗ(𝜁) = −∆𝛾 𝐴(𝜁௫) න 𝑑𝑥 (1
∞



+ 𝜉ଶ𝑥)
ଵ
ଶ 𝑒ି௫ ,                                     (11) 

𝜉ଶ = න 𝑑ଶ 𝑞 𝑞ଶ 𝐶(𝑞).                                                   (12) 

The effective interfacial energy 𝛾ୣ(𝜁) for partial 
contact is given as 

𝛾ୣ(𝜁)

∆𝛾

=
𝑃(𝑞)

𝑃(𝑞)
න 𝑑𝑥 (1 + 𝜉ଶ𝑥)ଵ/ଶ

∞



𝑒ି௫

−
2𝜋

𝛿
𝛼 න 𝑑𝑞 𝑞ଶ𝐶(𝑞),                                                  (13)

ೌ

ಽ

 

𝛿 =
4(1 − 𝜈ଶ)∆𝛾

𝐸
,                                                         (14) 

where 𝛿 is the adhesion length. 

 

2.2 Contact area, and interfacial surface 
separation for a non-adhesive contact 
 
 For a non-adhesive contact, the boundary condition of 
the probability distribution P(σ, ζ) for the normal stress 
σ at the interface under the magnification ζ in Eq. (5) is 
[13]: 

𝑃(𝜎 = 0, 𝜁) = 0,                                                            (15) 

and for the resulting probability distribution [18, 30] 

𝑃(𝜎, 𝜁)

=
1

2(𝜋𝐺)ଵ/ଶ
 ቊexp ቈ−

(𝜎 − 𝑝)ଶ

4𝐺


− exp ቈ−
(𝜎 + 𝑝)ଶ

4𝐺
ቋ,                                                    (16) 

where p is the nominal squeezing pressure and 

𝐺(𝑞) =
𝜋

4
 ൬

𝐸

1 − 𝜈ଶ൰
ଶ

න 𝑑𝑞 𝑞ଷ𝐶(𝑞).                       (17)
ೌ

ಽ
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C(q) is the auto-spectral density function [31] of the 
hard randomly rough substrate. Denoting the actual 
(microscopic) and the nominal (macroscopic) contact 
areas by A and A0, respectively, the relative contact area 
is: 
𝐴

𝐴
= න 𝑑𝜎 𝑃(𝜎, 𝜁) =: 𝑃(𝑞).                                      (18)

∞

శ
 

So, 
 
𝐴

𝐴
=

1

(𝜋𝐺)
ଵ
ଶ

 න 𝑑𝜎 exp ቆ−
𝜎ଶ

4𝐺
ቇ ,





= erf ൭
𝑝

2𝐺
ଵ
ଶ

൱.                                    (19) 

The error function can be approximated by a linear 
function of its argument, for the case the argument is 
small. The result is 

𝐴

𝐴
≈

𝑝

(𝜋𝐺)ଵ/ଶ
 ,     𝑝 ≪ 𝐺ଵ/ଶ.                                      (20) 

Regarding the interfacial surface separation, let’s 
consider an elastic block squeezed against a flat hard 
surface. The separation between the average surface 
plane of the block and the average surface plane of the 
substrate is denoted by ū , which is nonnegative.  Due 
to the external pressure p required to produce this 
separation, an elastic energy is stored in the block. 
Denoting this by Uel (equation (10)), one arrives at 

𝑈(𝑢ത) = න 𝑑𝑢 𝐴𝑃(𝑢),
∞

௨ഥ

   

𝑝 = −
1

𝐴
 
𝑑𝑈

𝑑𝑢
.                                                             (21) 

In cases the applied normal squeezing pressure p is 
small, the surface asperities do not fully penetrate 
into the elastic block and only a partial contact is 

realized and P (q) in (10) is given by [1, 13]: 

 

𝑃(𝑞) =
1

√𝜋
 න 𝑑𝑥 exp (

ௌ()



− 𝑥ଶ).                           (22) 

𝑆(𝑞) =  
𝑤(𝑞)

𝐸∗
.                                                                (23) 

𝑤(𝑞) = ቈ𝜋 න 𝑑𝑞 𝑞ଷ 𝐶(𝑞)


ಽ



ିଵ/ଶ

.                               (24) 

Substituting Eqs.  (3), (10), (24), and (23) in (21), 
after calculations it is shown that   for non-adhesive 
interactions and small applied pressures, the relation 
between the average interfacial separation ū  and the 
small applied normal squeezing pressure p is [30, 32]. 

 

𝑝 ≈ 𝛽𝐸∗ exp ൬−
𝑢ത

𝑢
൰,      

𝑢ത ≈ 𝑢 log ൬
𝛽𝐸∗

𝑝
൰,                                                         (25) 

                                              

where 

𝑢 = √𝜋 𝛼 න 𝑑𝑞 𝑞ଶ𝐶(𝑞) 𝑤(𝑞),
ೌ

ಽ

                              (26) 

𝛽

= 𝜀 exp ൝−
∫ 𝑑𝑞 𝑞ଶ𝐶(𝑞)𝑤(𝑞) log [𝑤(𝑞)]

ೌ

ಽ

∫ 𝑑𝑞 𝑞ଶ𝐶(𝑞)𝑤(𝑞)
ೌ

ಽ

ൡ,        (27) 

𝜀 = exp ቈන 𝑑𝑥 2𝑥 log x exp(−xଶ)
∞



 ≈ 0.7493.     (28) 

3.2 Hysteretic contribution of smooth 
rubber friction on the rough concrete 
surface 

 The hysteretic friction model developed by Persson 
[1] is based on the energy dissipation ∆E. As the 
rubber slides on a hard rough surface, oscillatory 
forces are experienced by it, which cause energy 
being dissipated in the rubber. This corresponds to the 
nominal frictional stress σf experienced by rubber. 
The calculation is based on an integral of 
contributions due to different wavelengths (wave 
numbers). In [1], equations have been derived which 
describe the friction on a rubber block which is 
pressed on a rough surface. The frictional stress σf is 
equal to µσ0, where σ0 is the normal stress. One has 

 

𝜇 ≈
1

2
 න 𝑑𝑞 𝑞ଷ𝐶(𝑞) 𝑃(𝑞)

ೌ

బ

 

න 𝑑𝜙 cos 𝜙 Im
ଶగ




𝐸(−𝑞𝑢 cos 𝜙) 

𝜎(1 − 𝜈ଶ)
൨.                            (29) 

where E is the complex viscoelastic modulus of the 
rubber block and C(q) is the auto- spectral density 

function of the hard randomly rough surface.     
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Experiments have shown that a typical road surface 
[24] and a polished surface by an abrasive paper 
(polished styrene butadiene rubber (SB)) [39] can 
be approximated by self-affine fractals. The 
frequency is written in terms of the slip velocity 

𝑢

𝜆
= 𝒒. 𝒖 =  𝑞𝑢,                                                              (30) 

where 𝜙 is the angle between the sliding direction and 
the wave vector q. 𝜈, the Poisson’s ratio of the rubber 
block, is assumed to be independent of frequency 
and equal to 0.5.  The integration in Eq. (29) is 
performed over the wave vectors. The normalized 
contact area P (q) is defined as: 

𝑃(𝑞) =  
𝐴

𝐴
    

=
2

𝜋
න 𝑑𝑥 

sin 𝑥

𝑥
exp[−𝑥ଶ𝐺(𝑞)]

∞



= 𝑒𝑟𝑓 ቈ
1

2ඥ𝐺(𝑞)
,                                                           (31) 

𝐺(𝑞)

=
1

8
න 𝑑𝑞 𝑞ଷ𝐶(𝑞) න 𝑑𝜙 Im

ଶగ



ฬ
𝐸(−𝑞𝑢 cos 𝜙) 

𝜎(1 − 𝜈ଶ)
ฬ

ଶ

.  (32)
ೌ

బ

 

3 Two randomly rough surfaces in 
contact with each other 
 
3.1 Effective interfacial energy for an adhesive 
contact 

 The elastic energy stored in the vicinity of the asperity 
contact regions due to a flat elastic surface being in contact 
with the rough surface of a hard substrate is [17]: 

 

𝑈 ≈ −
1

2
න 𝑑ଶ 𝑥 〈𝑢௭(𝒙)𝜎௭(𝒙)〉, 

        

=   −
(2𝜋)ଶ

2
න 𝑑ଶ 𝑞 〈𝑢௭(𝒒)𝜎௭(𝒒)〉,                             (33) 

 
where uz(x) and σz(x) are the normal displacement field 
of the surface of the elastic solid and the normal stress, 
respectively, and uz(q) and σz(q) are their Fourier transform. 

The relation between the normal stress and the normal 

displacement field of the surface of the elastic solid is 
[17]: 

𝑢௭(𝒒) = 𝑀௭௭(𝒒) 𝜎௭(𝒒),                                                (34) 

𝑀௭௭(𝒒) = −
2(1 − 𝜈ଶ)

𝐸𝑞
.                                               (35) 

Now consider a randomly rough self-affine fractal 
elastic surface in contact with the randomly rough 
self-affine surface of a hard substrate. Equation (34) 
still holds but now, if full contact between the 
surfaces is achieved, the normal displacement field of 
the elastic solid is equal to the difference of the 
heights of the surfaces: 

𝑢௭(𝒒) = ℎଶ(𝒒) − ℎଵ(𝒒),                                              (36) 

so that 

 
ℎଶ(𝒒) − ℎଵ(𝒒) = 𝑀௭௭(𝒒) 𝜎௭(𝒒).                               (37) 

Substituting Eqs. (37) and (35) in Eq. (33) results in 
 
𝑈(𝜁)

≈
(2𝜋)ଷ𝐸

4(1 − 𝜈ଶ)
න 𝑑𝑞 𝑞ଶ  [〈ℎଶ(𝒒) ℎଶ(−𝒒)〉

+ 〈ℎଵ(𝒒) ℎଵ(−𝒒)〉 − 〈ℎଵ(𝒒) ℎଶ(−𝒒)〉

− 〈ℎଶ(𝒒) ℎଵ(−𝒒)〉].                                                       (38) 
 

the spectral density function [33] is 

𝐶(𝒒) =
(2𝜋)ଶ

𝐴
〈ℎ(𝒒) ℎ(−𝒒)〉,                                (39) 

where A0 denotes the macroscopic (nominal) contact 
area (L is the diameter of the macroscopic contact area, 
so that A0 = L2), and i and j could be 1, 2 [34, 35]. Here 
the joint distribution function of the height fluctuations 
is assumed to be Gaussian while the surfaces are 
assumed to be homogeneous and isotropic. One has 

 

〈ℎ(𝒒) ℎ(−𝒒)〉 =  〈|ℎ(𝒒)|ଶ〉 =
𝐴𝐶(𝑞)

(2𝜋)ଶ
,              (40) 
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where Ci is a real function which depends on only 
q = |q|. One also has 

〈ℎଵ(𝒒) ℎଶ(−𝒒)〉

=  𝜂ଵଶ(𝒒)ඥ〈|ℎଵ(𝒒)|ଶ〉〈|ℎଶ(𝒒)|ଶ〉  ,                        (41) 

where η12(q) is called the coherence function and is a 
complex function, the values of which are inside the 
unit disk in the complex plane [36, 37]. If the 
surfaces are homogeneous and isotropic, η12 would 
be real and depend on only q, and would be equal 
to η21. In that case the subscripts are dropped and 
η12 and η21     are denoted by η. Special cases are η = 0 
(uncorrelated surfaces), η = +1 (completely positive 
correlated surfaces), or η = -1 (completely negative 
correlated surfaces). Here the simple case is studied 
that η is a constant (does not depend on q). 
Substituting Eqs. (40) and (41) in Eq. (38) with 
constant η results in [27-29]: 

𝑈(𝜁)

≈
𝜋 𝐸 𝐴

2(1 − 𝜈ଶ)
න 𝑑𝑞 𝑞ଶ  [𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)]

−
𝜋 𝐸 𝐴

(1 − 𝜈ଶ)
 𝜂 න 𝑑𝑞 𝑞ଶ  ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞).                      (42) 

 
 As stated earlier, the adhesion energy Uad (ζ) is 
assumed to be proportional to the apparent contact area. 
When the elastic solid has a randomly rough surface, 
the apparent contact area changes so that the adhesion 
energy changes as well. Regarding f (ζ) in Eqs. (1) 
and (2), it is calculated assuming full contact between 
the elastic solid and the hard rough substrate, as in 
[38]. A similar approach is followed here to calculate f 
(ζ) for two rough solids. Finally, one has for the stress 
distribution at the magnification ζ, 
 

𝜎௭(𝒙, 𝜁) = න 𝑑ଶ𝑞 𝜎௭(𝒒) 𝑒𝒒.𝒙

|𝒒|ழ ಽ

.                       (43) 

 
Substituting Eq. (37) in Eq. (43) we have 

 

𝜎௭(𝒙, 𝜁) = න 𝑑ଶ𝑞 𝑀௭௭
ିଵ(𝒒) [ℎଶ(𝒒)

|𝒒|ழ ಽ

− ℎଵ(𝒒)]  𝑒𝒒.𝒙 .                                (44) 

So, 
 

∆𝜎௭(𝒙, 𝜁) = න 𝑑ଶ𝑞 𝑀௭௭
ିଵ(𝒒) [ℎଶ(𝒒)



− ℎଵ(𝒒)]  𝑒𝒒.𝒙 ,                                (45) 
 
where 

𝐷 = {𝒒| 𝜁𝑞 < |𝒒|

< (𝜁 + ∆𝜁)𝑞}.                                (46)  

One then arrives at 

〈(∆𝜎௭)ଶ〉

= න 𝑑ଶ𝑞 න 𝑑ଶ𝑞ᇱ



𝑀௭௭
ିଵ(𝒒) 𝑀௭௭

ିଵ(𝒒ᇱ)𝑒(𝒒ା𝒒ᇲ).𝒙



× 〈[ℎଶ(𝒒) − ℎଵ(𝒒)][ℎଶ(𝒒ᇱ) − ℎଵ(𝒒ᇱ)]〉.                 (47) 

Using Eqs. (35), (40), and (41) we have 

〈(∆𝜎௭)ଶ〉 =
2 𝜋 𝐸ଶ

4 (1 − 𝜈ଶ)ଶ
 𝑞(𝜁𝑞)ଷ∆𝜁  [𝐶ଵ(𝜁𝑞)

+ 𝐶ଶ(𝜁𝑞)

− 2𝜂 ඥ𝐶ଵ(𝜁𝑞)𝐶ଶ(𝜁𝑞)],              (48) 
and 

𝑓(𝜁)

=
𝜋 𝐸ଶ

4 (1 − 𝜈ଶ)ଶ
 𝑞(𝜁𝑞)ଷ [𝐶ଵ(𝜁𝑞) + 𝐶ଶ(𝜁𝑞)

− 2𝜂 ඥ𝐶ଵ(𝜁𝑞)𝐶ଶ(𝜁𝑞)].                                            (49) 
 

The relative contact area, P(ζ), is obtained through 
Eqs. (8) and (9), where f(ζ) is obtained from Eq. (49). 
So γeff (ζ), the effective interfacial energy per area 
between an elastic solid and  a hard substrate, both 
with randomly rough surfaces becomes [27-29] 

 
𝛾ୣ(𝜁)

∆𝛾

=
𝑃(𝑞)

𝑃(𝑞)
න 𝑑𝑥 (1 + 𝜉ଶ𝑥)ଵ/ଶ

∞



𝑒ି௫

−
2𝜋

𝛿
𝛼 න 𝑑𝑞 𝑞ଶ[𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)

ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)],                                                    (50) 
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and for full contact, where α = 1, 
 

𝛾ୣ(𝜁)

∆𝛾

= න 𝑑𝑥 (1 + 𝜉ଶ𝑥)ଵ/ଶ
∞



𝑒ି௫

−
2𝜋

𝛿
න 𝑑𝑞 𝑞ଶ[𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)

ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)].                                                   (51) 

 

3.2 Contact area and interfacial surface 
separation for a non- adhesive contact 

 The new form of G and the relative contact area for 
elastic non-adhesive contact are obtained from E q s .  
(17) and ( 24) through a substitution of the 
autocorrelation function C( q )  with the 
autocorrelation corresponding to (h2 − h1), that is [27–
29] 

 

𝐶(𝑞) → ൫𝐶ଵ(𝑞) + 𝐶ଶ(𝑞) − 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)൯,       (52)                                                          

so, one could obtain: 

𝐺(𝑞)

=
𝜋

4
 ൬

𝐸

1 − 𝜈ଶ൰
ଶ

න 𝑑𝑞 𝑞ଷ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ.                                                     (53) 

𝑤(𝑞)

= ቆ𝜋 න 𝑑𝑞 𝑞ଷ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃቇ

ିଵ/ଶ

.                                           (54) 

Using Eq. (24), 

𝜕𝑃

𝜕𝑢ത
=

2

√𝜋
 𝑆(𝑞) 𝑒𝑥𝑝{−|𝑆(𝑞)|ଶ𝑝ଶ} 

𝑑𝑝

𝑑𝑢ത
.                     (55) 

Substituting Eqs. (42) and (55) in Eq. (22) results in 

𝑑𝑢ത

= −√𝜋𝛼 න 𝑑𝑞 𝑞ଶ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ

× 𝑤(𝑞)exp ൝− ቈ
𝑤(𝑞)𝑝

𝐸∗ 

ଶ

ൡ 
𝑑𝑝

𝑝
.                                   (56) 

Integrating this from ū = 0 (full contact, 
corresponding to p = ∞) to 𝑢ത gives 

 
𝑢ത

= √𝜋𝛼 න 𝑑𝑞 𝑞ଶ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ

× 𝑤(𝑞) න
𝑑𝑝′

𝑝′  𝑒𝑥𝑝 ൝− ቈ
𝑤(𝑞)𝑝′

𝐸∗ 

ଶ

ൡ 
∞



.                       (57) 

For very low squeezing pressures, one has 

𝑝 ≈ 𝛽𝐸∗ exp ൬−
𝑢ത

𝑢
൰,                                                   (58) 

𝑢

= √𝜋𝛼 න 𝑑𝑞 𝑞ଶ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ 𝑤(𝑞),                                           (59) 

𝛽 = 𝜀 exp 
 

൝න ቀ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቁ 𝑤(𝑞)𝑞ଶlog (𝑤(𝑞))𝑑𝑞   

× ቆන ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)
ೌ

ಽ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ 𝑤(𝑞)𝑞ଶ𝑑𝑞ቇ

ିଵ

ൡ,                        (60) 

 
 
with ε being obtained from Eq. (28). 
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. . 

3.3 Hysteretic contribution of rubber 
friction on the concrete surface when 
both surfaces are rough 

 Now consider that a randomly rough viscoelastic 
solid slide on a randomly rough hard substrate. 
Equation (29) holds, but here for full contact, the 
displacement of rubber is the difference between the 
fluctuations of the rubber and the substrate which is 
equivalent with Eq. (36), so with substituting the 
autocorrelation function C with the autocorrelation 
(Eq. (52)) the friction coefficient µ would be: 

𝜇

=
1

2
 න 𝑑𝑞 𝑞ଷ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)

ೌ

బ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ  𝑃(𝑞)

× න 𝑑𝜙 cos 𝜙 Im
ଶగ




𝐸(−𝑞𝑢 cos 𝜙) 

𝜎(1 − 𝜈ଶ)
൨.                        (61) 

  

 As stated earlier, under the nominal stress σ0, the 
surface asperities do not fully penetrate inside the 
rubber block and only a partial contact between the hard 
surface and the rubber block can be achieved. The 
introduction of the normalized contact area P (q) in Eq. 
(61) takes this into account. Roughening the surface of 
the viscoelastic body changes the normalized contact 
area. The result for G(q) would be (53) [27–29] 

 
𝐺(𝑞)

=
1

8
න 𝑑𝑞 𝑞ଷ ቂ𝐶ଵ(𝑞) + 𝐶ଶ(𝑞)

ೌ

బ

− 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞)ቃ න 𝑑𝜙 
ଶగ



ฬ
𝐸(−𝑞𝑢 cos 𝜙) 

𝜎(1 − 𝜈ଶ)
ฬ

ଶ

.    (62) 

 In Eqs. (61) and (62), C1(q) and C2(q) are the auto 
spectral density functions of the rubber block and the 
concrete surface, respectively. The first, second, and 
third terms in Eqs. (61) and (62) show the relations 
between the coefficient of friction and the normalized 
contact area with roughness of rubber block, 
roughness of substrate, and the roughness cross 
correlation between the rubber and the substrate, 
respectively. An explanation is in order here. It is 

assumed that parts of the rubber and the substrate 
which are in contact, both change with time. That is 
the case when a rubber wheel is rolling on the 
substrate, or when a rubber piece is rotating on a 
substrate around a rotation axis normal to the 
substrate. In such cases, the rubber and the substrate 
behave symmetrically. Otherwise, if a finite block of 
rubber is sliding on a larger substrate, with the 
contact part of the rubber being constant, the contact 
part of the substrate changes, and that of the rubber 
does not change. This is not the case studied here. 

4 Numerical Results 

 In all cases considered below, the solids have self-
affine fractal roughness. The auto-spectral density 
function for self-affine fractals can be described by 
[1, 2, 5, 37, 40]: 

 

𝐶(𝑞) ≈
𝐻

2 𝜋
൬

ℎ

𝑞
൰

ଶ

 ൬
𝑞

𝑞
൰

ିଶ(ுାଵ)

  , ℎ௦ = ඥ〈ℎଶ〉

= ඨ
(ℎ)ଶ

2
 .                                                                    (63) 

H and hrms are the Hurst exponent and the root-mean-
square roughness of the solid, respectively. q0 = 2π/ξ 
is the roll-off wave number and ξ is the in-plane 
correlation length  for the rough solid. q1 = 2π/a 
where a is the lattice constant (or the distance 
between the atoms). 

4.1 Numerical Effective interfacial 
energy for an adhesive contact 

The auto-spectral densities of the surfaces are 
obtained from Eq. (63). The following values are used 

𝐷 = 2.2,    𝐻 = 0.8,     ∆𝛾 = 𝛾ଵ + 𝛾ଶ − 𝛾ଵଶ

= 100
𝑚𝑒𝑉

�̇�ଶ
 ,    𝛿 = 0.68 �̇�.           (64) 
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γeff /Δy 
 
 
 
 
 
 
 
 
 
 
A/A0 
 
 
 
 
 
 
 
 
 

                       rms roughness of the substrate (Å ) 

Figure 1. (a) The effective interfacial energy γeff , in units of 
the interfacial energy ∆γ for  flat surfaces, as a function of the 
root-mean-square roughness of the substrate. The solid curve is 
the result of Persson’s partial contact theory, and the dash-dot 
curve is the result of    Persson’s full contact theory. It is seen that 
for partial contact, the effective interfacial energy γeff vanishes 
in the root-mean-square roughness hrms = 18.305 Å.  (b) The area 
of real contact A, at the point where the external load vanishes, 
as a function of the root-mean- square roughness of the hard 
substrate, calculated using Persson’s contact mechanics theory. 
The substrate surface is a self-affine fractal and the auto-spectral 
density function is given by Eq. (63) with the Hurst exponent H 
= 0.8. One notes that A vanishes at the same root-mean-square 
roughness which makes γeff vanish. 

 
 If the only rough surface is the substrate, the result 
would be Fig. 1. If both surfaces are rough, there 
would be two independent self-affine rough 
surfaces characterized by (H1, ξ1, h1rms) and (H2, ξ2, 
h2rms).  Taking the Hurst exponent of the two 
surfaces as H1 = H2 = H = 0.8, and their 
correlation lengths as ξ1 = ξ2 = (2 π/q0), there 
remains the root-mean-square roughness of the two 
surfaces. The root-mean-square roughness of the 
elastic solid is taken to be 6 Å and that of the 

substrate is varied from 1 Å up to a value that the 
contact area vanishes. 
 
γeff /Δy 
 
 
 
 
 
 
 
 
 
 
A/A0 

 
 
 
 
 
 
 
 
 
 
                          rms roughness of the substrate (Å ) 
 
Figure 2 . (a) The effective interfacial energy γeff , in units of 
the interfacial energy ∆γ  for flat surfaces, as a function of the 
root-mean-square roughness of the substrate. The solid curve is 
the result of Persson’s partial contact theory.  (b) The area of 
real contact A, at the point the external load vanishes, as a 
function of the root-mean- square roughness of the hard 
substrate, calculated using Persson’s contact mechanics theory. 
The surfaces of the elastic solid and the hard substrate are self- 
affine fractals and the auto-spectral densities of the surfaces are 
obtained from Eq. (63) with Hurst exponents H1 = H2 = H  = 0.8 
and the correlation length ξଵ

ᇱ =  ξଶ
ᇱ = (2π/q). The surfaces are 

uncorrelated (η = 0) in the solid curve, completely positive 
correlated (η = 1) in the dotted curve, and completely negative 
correlated (η = -1 ) in the asterisk curve. The root-mean-square 
roughness of the elastic solid is 6 Å, and that of the substrate varies 
from 1 Å up to a value that the contact area vanishes. 

 
 Figure 2 shows the effective interfacial energy γeff (ζ) 
for partial contact and the contact area of real 
contact, as a function of the root-mean-square 
roughness of the hard substrate. In all these curves, 
both the surfaces are rough. However, the surfaces 

(a) 

(b) 

(b) 

(a) 
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are uncorrelated (η = 0) in the solid curve, 
completely positive correlated (η = 1) in the dotted 
curve, and completely negative correlated (η = −1) 
in the asterisk curve. It is seen that both surfaces are 
rough but uncorrelated which results in a decrease in 
the effective energy and the area of real contact 
compared to the case of only one rough surface. 
Introducing a positive correlation results in an 
increase in the effective energy . While the area of 
real contact, compared to the uncorrelated case; 
introducing a negative correlation result in a decrease 
in the effective energy and the area of real contact, 
compared to the uncorrelated case. This is seen, for 
example, through a comparison of the roughness at 
which the adhesion vanishes. The root-mean square 
roughness corresponding to this point is 18.305 Å  
when  only  one  the  substrate  is  rough,  17 Å  when  
both  surfaces are  rough  but  uncorrelated,  24.742 Å  
when  both  surfaces  are  rough  and  the  surfaces  are 
completely  positive  correlated,  and  12 Å  when  both  
surfaces  are  rough  and  the  surfaces are completely 
negative correlated. Figure 2 also shows that for a 
positive correlation, increasing the root-mean-square 
roughness of the substrate from zero, makes the 
effective interfacial energy initially increase, and 
then decrease. This could be understood in the 
following way. The system with both surfaces 
rough, can be analyzed similar to a system with only 
one rough surface, if the following correlation C 
is used: 

𝐶(𝑞) = 𝐶ଵ(𝑞) + 𝐶ଶ(𝑞) − 2𝜂 ඥ𝐶ଵ(𝑞)𝐶ଶ(𝑞).     (65) 

It is seen that if η is positive, increasing C1 from 
zero, makes the right-hand side of the above first 
decrease and then increase. For fixed C2, the 
minimum value for C (corresponding with the 
maximum value for the effective interfacial energy) 
is obtained at 

𝐶ଵ = 𝜂 𝐶ଶ,                                                                  (66) 

 If η = 1, then the minimum value is obtained when 
C1 is the same as C2. And it is seen in Fig. 2 that for 
η = 1 (the dotted curve) the maximum value for the 
effective interfacial energy is obtained when the root-

mean-square roughness of the substrate is the same as 
that of the elastic solid. 

4.2 Contact area and interfacial surface 
separation for a non- adhesive contact 

 For the auto-spectral densities of the surfaces of the 
hard substrate and the elastic block, the following 
values have been used: 

 
𝑞 = 2 × 10଼ 𝑚ିଵ,    𝑞 = 4 × 10ଵ 𝑚ିଵ,              (67) 

𝐻ଵ = 0.8,                    ℎ௦ ଵ = 1 𝑛𝑚 , 

𝐻ଶ = 0.8,                     ℎ௦ ଶ = 1 𝑛𝑚 ,                       (68) 

𝐸 = 77.2 𝐺𝑃𝑎,           𝜈 = 0.42.                                   (69) 

Figure 3 shows the contact area ratio A/A0 
calculated from Eqs. (19) and (53), as a function of 
the normalized pressure p/E∗ for the magnification 
ζ = 4. The pressure distribution calculated from Eqs. 
(16) and (53), as a function of the normalized pressure 
σ/E∗, is shown in Fig. 4 for ζ = 4 and for three 
different nominal pressures. 
 
A/A0 
 
 
 
 
 
 
 
 
 

                                                      p/E* 

Figure 3: The contact area ratio A/A0 as a function of the 
normalized pressure p/E∗ for the magnification ζ = 4. The 
circle curve is for the case where only the substrate is rough. 
The asterisk, solid, and dotted curves correspond to the case 
where both surfaces are rough and uncorrelated (η = 0), 
completely positively correlated (η = 1), and completely 
negatively correlated (η = −1), respectively. 
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 In these curves, the circle curve is for the case where 
only the substrate is rough. The asterisk, solid, and 
dotted curves correspond to the case where both 
surfaces are rough and uncorrelated (η = 0), 
completely positively correlated (η = 1), and 
completely negatively correlated (η =-1), 
respectively. Figure 3 shows that both surfaces are 
rough, but uncorrelated, which results in a decrease in 
the contact area, compared to the case of only one 
rough surface. If both surfaces are rough, and they 
are correlated, depending on the sign of the 
correlation an increase or decrease in the values of the 
contact area is resulted, compared to the case of two 
uncorrelated surfaces and the case of only one rough 
surface.  A positive correlation (η = 1) increases the 
contact area between the two surfaces, so that the 
pressure distribution vanishes in a smaller normalized 
pressure, as seen from Fig. 4. For a negative 
correlation η = -1, however, the contact area is 
decreased compared to the case of uncorrelated 
surfaces and the case of only rough surface, so that the 
pressure distribution vanishes in larger pressures. It is 
seen that when both surfaces are rough but 
uncorrelated, the width of the pressure distribution 
is larger compared to the case where only one surface 
is rough. A positive (negative) correlation results in 
a decrease (an increase) of the width of the pressure 
distribution. 

 The logarithm of the normalized average pressure 
p/E∗, as a function of the separation 𝑢ത  between  the 
average plane of the substrate and the average plane 
of the lower surface of the elastic block is shown in 
Fig. 5 corresponds to the magnification ζ = 4. In this 
curve, the circle curve is for the case where only the 
substrate is rough. The asterisk, solid, and dotted 
curves correspond to the case where both surfaces are 
rough and uncorrelated (η  = 0), completely positively 
correlated (η  = 1), and completely negatively 
correlated (η = -1), respectively.  It is seen that the 
interfacial separation at a fixed pressure is larger when 
both surfaces are rough but uncorrelated. A positive 
(negative) correlation decreases (increases) the 
interfacial separation. 
 
 

logP 
 
 
 
 
 
 
 
 
 
logP 
 
 
 
 
 
 
 
 
 
logP 
 
 
 
 
 
 
 
 
 

σ/E* 

Figure 4. The pressure distribution as a function of the 
normalized pressure σ/E∗ for the magnification ζ = 4 and for 
three different nominal pressures. The circle curve is for the 
case where only the substrate is rough. The asterisk, solid, and 
dotted curves correspond   to the case where both surfaces are 
rough and uncorrelated (η = 0), completely positively 
correlated (η = 1), and completely negatively correlated (η 
= −1), respectively. 

 
 
 
 
 
 
 

ζ = 4 

p/E* = 0.101 

ζ = 4 

 p/E* = 0.208 

   ζ = 4 

p/E* = 0.048 
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log(p/E*) 
 
 
 
 
 
                                               u/hrms 1 

Figure 5. The logarithm of the normalized average pressure 
p/E∗, as a function of the separation ū  between the average 
plane of the substrate and the average plane of the lower 
surface of the elastic block for the magnification ζ = 4. The 
circle curve is for the case where only the substrate is rough. 
The asterisk, solid, and dotted curves correspond to the case 
where both surfaces are rough and uncorrelated (η = 0), 
completely positively correlated (η = 1), and completely 

negatively correlated (η = −1), respectively. 

 

 

log10 (C m-4) 
 
 
 
 
 
 
 
 
log10 (C m-4) 
 
 
 
 
 
 
 

             log10 (q m) 

Figure 6. (a) The auto spectral density function, as a function 
of the wave number q for the polished rubber block. The 
dashed line has the slope −2(1 +H1) = −3.74 corresponding to 
the Hurst exponents H1 = 0.87 and fractal dimension Df = 3- 

H1 = 2.13. The root-mean- square roughness is 6 µm. (b) The 
auto spectral density function, as a function of the  wave 
number q for the concrete surface. The dashed line has the slope 
−2(1 + H2) = −3.86 corresponding to the Hurst exponents H2 
= 0.93 and fractal dimension Df = 3 -  H2 = 2.07. The root-
mean-square roughness is 2.7 µm. 

log10 (E Pa-1)  
 
 
 
 
 
 
 
 

                                               log10 (f Hz-1) 

Figure 7. The real (upper curve) and the imaginary part (lower 
curve) of the viscoelastic modulus as a function of frequency 
at the glass transition temperature Tg  =  42.9◦C for the rubber 
tread compound. 

 
 
 
 
 
   µ 
 
 
 
 
 
 

                                          log10 (u (m. s-1)-1) 

Figure 8. The friction coefficient versus the sliding velocity for 
the tire tread compound, with no flash temperature effect [24]. 
The upper curve with asterisk markers corresponds  to both surfaces 
being rough but uncorrelated, the lower curve with point markers to 
only the substrate being rough. The reference temperature is T = 
25◦C. 

log10 (A/A0) 
 

 
                                                                   η = 0 

                                       

                             

                                             

                                     log10 (u (m. s-1)-1)                       

Figure 9. The relative real-contact area versus the sliding 
velocity. The lower curve with asterisk markers corresponds 
to both surfaces being rough but uncorrelated, the upper curve 
with point markers corresponds to when only the substrate is 

rough. The reference temperature is T = 25◦C. 

(a) 

(b) 

η = 0 
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4.3 Hysteretic contribution of rubber 
friction on the concrete surface when 
both surfaces are rough 

 In all cases considered below, the viscoelastic solid 
is a polished rubber block where the substrate is a 
concrete surface with auto-spectral density 
functions (Fig. 6). Also, we have used the 
viscoelastic modulus of the rubber block in Fig. 7 
with the reference temperature T=25◦C. The nominal 
squeezing pressure is σ0 = 0.4 MPa. 

 Figure 8 is the friction coefficient versus the sliding 
velocity for the polished tire tread compound, with no 
flash temperature effect [24]. The upper curve with 
asterisk markers corresponds to both surfaces being 
rough but uncorrelated, the lower curve with point 
markers corresponds to when only the substrate is 
rough. The reference temperature is T = 25◦C. 

 Figure 9 is the relative real-contact area versus the 
sliding velocity. The lower curve with asterisk 
markers corresponds to both surfaces being rough 
but uncorrelated, the lower curve with point 
markers corresponds to when only the substrate is 
rough. It is seen that the real contact area is less, 
hence the friction is more, when both surfaces are 
rough.  If both the rubber and the substrate are rough 
and correlated, depending on the sign of correlation  
an increase or decrease in the values of the friction is 
resulted compared to the case of two uncorrelated 
surfaces. The rough viscoelastic solid and the rough 
substrate are assumed to be correlated with parameters 
similar to the previous section. Figure 10 shows that 
η = 1 (a positive correlation) decreases the friction 
between the two surfaces and η = -1 (a negative 
correlation) increases the friction between the two 
surfaces compared to uncorrelated surfaces, with 
the same roughness parameters. The real-contact 
area for η = 1 and η = −1 are shown in Fig. 11. 
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Figure 10. The friction coefficient versus the sliding velocity for 
the tire tread compound, without the flash temperature effect. No 
correlation: the middle curve with asterisk markers. Complete 
positive correlation: the lower curve with plus sign markers. 
Complete negative correlation: the upper curve with point 
markers. The reference temperature is  T = 25◦C. 
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Figure 11. The relative area of real contact versus the sliding 
velocity, without the flash temperature effect. No correlation: the 
middle curve with asterisk markers. Complete positive 
correlation: the upper curve with plus sign markers. Complete 
negative correlation: the lower curve with point markers. The 
reference temperature is T = 25◦C. 

 

4 Concluding remarks 

 We reviewed Persson’s contact mechanics theory. 
We also reviewed the extended version of Persson’s 
contact mechanics theory. In the extended version, we 
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η = +1 
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presented that a case where both surfaces are rough 
can be mapped into a case of only one surface being 
rough, this is possible only if one removes the 
constraint that the rough surfaces of the latter be self-
similar. So, there is no general mapping between 
systems of both surfaces being rough and self-similar, 
and those with only one surface being rough and self-
similar. 

 The extended version depicted that in the case where 
both surfaces are rough, it could happen that 
increasing the roughness of one surface increases the 
effective interfacial energy. This is in contrast with 
the case of only one surface being rough, where 
increasing the roughness always results in a decrease 
in the effective interfacial energy. The results were 
seen to be depending on the correlation between the 
roughness of the two surfaces.  Specifically, it was 
shown that when the two surfaces are uncorrelated, 
the real contact area and the adhesion is less 
compared to the case where only the substrate is 
rough. 

   It was also shown that when the surfaces are 
correlated, a positive correlation increases the real 
contact area and the adhesion compared to the case of 
no correlation. This is while a negative correlation 
decreases the real contact area and the adhesion 
compared to the case of no correlation. A reverse 
pattern is seen for the width of the pressure 
distribution, the interfacial separation (at equal 
pressures), as well as the friction; However, these 
parameters experience an increase when both surfaces 
are rough but uncorrelated, while they experience a 
decrease (an increase) when a positive (negative) 
correlation exists. 
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