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The ballistic deposition model with power-law distributed noise (BD-PLN) has been 
simulated and investigated. Analysis of scaling exponents and statistical features seems 
essential in understanding the mechanism of noise in the phenomena. In the BD-PLN 
model, heterogeneous particles with rod-like shapes are deposited during growth time 
and lead to the forming of porous structures. By using the Hoshen-Kopelman algorithm, 
porous structures are converted to contour loops, and the fractal properties of the loops 
are considered. The fractal dimension of each loop, 𝐷௙ , the fractal dimension of the 

contour set, d, the generalized dimensions, 𝐷௤, and the mass function, 𝜏௤ are calculated. 

The fractal dimension, d, increases as d = a + b𝜇௖  versus 𝜇 exponent, and remains 
constant for 𝜇 > μ

௖
= 3, where 𝜇 is the decay of the noise amplitude. The results 

indicate that augmentation of 𝜇 exponent and conspicuity of the Gaussian ballistic 
deposition model prepare to decrease the structure porosity and multi-affinity, and also 
increase the contour loop area and perimeter. 
 

1 Introduction 

 To analyze roughness surfaces resulting from 
nonequilibrium growth phenomena, combining the 
approaches obtained from theoretical analysis and 
computational simulation is necessary to get the desired 
results. Fluctuations in rough surfaces obtained during 
growth are often characterized by discrete statistical 
models implemented in Monte Carlo algorithms [1,2]. 
Discrete significant and fundamental growth models 
include random deposition (RD) [3,4], ballistic 
deposition (BD) [5], random deposition with surface 
relaxation (RDSR) [6,7], and solid-on-solid [8]. Among 
these models, the ballistic deposition model belonging 
to the universality class Kardar-Parizi-Zhang (KPZ) has 

special features due to its porous structure and has 
received attention [9,10]. In a ballistic deposition 
model, particles that randomly land on a substrate can 
stick to neighboring particles on first contact, which 
causes a correlation between the accumulated particles 
and the creation of the porous structure. The size and 
shape of the particles, the size and shape of the pores 
created, and the orientation of the accumulated particles 
and pores can affect the thermal [11], electrical [12,13], 
and optical properties of the material [14].  

 The differential equation that denotes the variation of 
height, h(x,t), with time, t, at any position x in a growth 
model is given by: 
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∂h(x, t) 

∂t 
= F + η (x, t),                                                    (1) 

where F is the average number of particles at site x and 
the noise η(x, t) expresses the random fluctuations in 
deposition processes. In general mode the value of 
η(x, t) is chosen as uncorrelated Gaussian distributed 
noise, but there are events that cannot be explained by a 
Gaussian noise [15,16]. For example, in the 
investigation of fluid flow in porous environments, a 
power-law distributed noise has been observed in which 
the noise amplitude follows a power law as follows 
[17]: 

 p(η)≈   μη-(μ + 1),                                                             (2) 
 

where η >1, while μ is an exponent that characterizes 
the decay of the noise amplitude. By decreasing the 
exponent μ, the uniformity of the power-law noise is 
reduced, and by increasing it, the power-law noise 
approaches the Gaussian one. 

 Random processes in nature can create fractal 
structures. The fractal analysis includes various 
techniques for allocating a fractal dimension and other 
fractal properties to a data set. This data set can be a 
pattern or signal from natural objects [18], ecology 
science [19], market fluctuations [20,21], digital images 
[22], and surfaces growth [23]. Analysis of fractal 
systems has been done using mathematical and 
numerical techniques in the development of fractional 
calculations [24,25]. In inspecting the complexity of 
structures that show how objects fill the available space, 
a criterion called the fractal dimension is used [26]. The 
fractal dimension can be used to understand the desired 
phenomenon. For example, rougher surfaces have a 
larger fractal dimension, and their fractal dimension can 
be calculated to estimate the roughness of the surface. 

 In investigating rough surfaces, it is observed in most 
cases that the surface growth is not isotropic in all 
directions and that such irregularities lead to 
multifractal behaviors [27,28,29]. This irregularity is 
not present in monofractal structures and, they are 
parameterized by a scaling exponent at all scales. 
Multifractal scaling analysis has been utilized in the 
review of growth models as the solid-on-solid model 
[30], diffusion-limited aggregation surfaces [31], and 
the random-deposition model [32]. 

 Contour fractal analysis is another type of fractal 
analysis in which information is addressed from point 
to point of a surface. Contour loops are obtained by 
connecting points with the same height which are non-
intersecting closed lines. Loops often have fractal 
properties related to the roughness and morphology of 
the underlying surfaces. Contour analysis of rough 
surfaces has been applied for Gaussian surfaces [33,34], 
KPZ surfaces [35], etched silicon rough surfaces [36], 
WO3 experimental rough surfaces [37], and random 
deformations of suspended graphene sheets [38]. 

 In this paper, the ballistic deposition model with a 
power-law distributed noise (BD-PLN) has been 
simulated, and the contour fractal analysis and 
multifractal analysis have been investigated. Section II 
presents details of the generation of the rough surface, 
and in Sections III and IV, contour fractal analysis and 
the multifractal analysis are considered. Section V 
discusses the results, and finally in Section V I the 
conclusion will be given. 

 
2 BD-PLN model 
 
 The two-dimensional BD-PLN model is made by 
landing and accumulating heterogeneous particles that 
land directly and vertically on a flat substrate. The 
particle position, x, is randomly selected. Falling 
particles are rod-like and their length, l, follows the 
power-law distribution of Eq. (2) 

 

𝑙 = 𝑖𝑛𝑡 ቆ𝑟
 ି 

ଵ
ఓቇ,                                                                (3) 

 
where l is the rod length, r is a random number 
uniformly distributed over the interval (0,1), and μ 
indicates the decay of the noise amplitude chosen as μ 
≥1. At a random position x, the landing particle sticks 
to its top or nearest neighbor particle and rises to a 
height of h(x). The dynamic of this process is shown as 
follows: 

ℎ(𝑥, 𝑡 +  1)  =  [max (ℎ(𝑥 −  1, 𝑡), ℎ(𝑥, 𝑡)  +
 1, ℎ(𝑥, 𝑡 +  1))].                                                           (4)                     

 At t = 0 for all x, h(x, t) = 0, and periodic boundary 
conditions are applied at each time step to limit the sites 
in the expected range [1, L], where L is the size of the 
substrate. According to the Monte Carlo simulation, 
time steps equal to the size of the system, L, are 
considered. At each step, L particles are randomly 
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landed and accumulated. Figure 1 shows a schematic 
view of heterogeneous particle deposition in the BD-
PLN model. 

 
Figure 1. Schematic view of the accumulation of heterogeneous 
particles in the BD-PLN model. The particles (A, B, and C) 
vertically come down and stick to their top or nearest neighboring 
particles.  

 
 The Hoshen-Kopelman algorithm determines 
homogeneous patches in a 2D matrix. In this algorithm, 
the cluster size array is identified and labeled with the 
appropriate index. In each surface set of lines of equal 
height, for each loop, the length of the loop or its 
perimeter, s, can be defined as which has a radius of R 
length. The length of the loop is equal to the number of 
unit cells that make up the contour loop. The radius of a 
loop is calculated by the following equation: 

 

𝑅ଶ =
١

N
෍ [(xi - xc)ଶ +(yi - yc)ଶ]

N

௜ୀଵ

,                      (5) 

 
where  xc = 

١

N
∑ xiN

௜ୀଵ  and yc = 
١

N
∑ yiN

௜ୀଵ   are the central 

mass coordinates. By considering the scaling behavior 
of the averaged loop perimeter, ⟨𝑠⟩, versus averaged 
loop radius, ⟨R⟩, the fractal dimension of each loop, Df, 
is determined by the following: 

 
⟨𝑠⟩ ∼ ⟨R⟩஽೑ .                                                               (6)  

 
In order to calculate the fractal dimension of all the 
loops formed on the surface, the box-counting method 
has been used. The box-counting dimension is used by 
many researchers who work on fractal analysis due to 
the ease of calculations [40,41]. For scaled 
quantification with the box-counting method, the 

desired pattern is cut into smaller pieces, usually in the 
form of a square with the size r.                   

  

(a) μ = 2    

 
(b) μ = 6 

 
Figure 2. The contour lines created in the side-view of the BD-PLN 
model for different values of 𝜇, 

 
 
 The number of boxes covering the shape is changed by 
taking boxes with different side lengths. As the side 
length decreases toward zero, the boxes tend to cover 
the real fractal more. The side-view images of the BD-
PLN model with different μ values were derived. The 
boxes that cover the fractal loops are counted as N(r). 
The scale relation between N(r) and r is: 

 
𝑁(𝑟) ∼ 𝑟ିௗ .                                                             (7)  
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where d is the fractal dimension of all loops located in 
the side-view of the BD-PLN model. 

 
 
Figure 3. The log-log diagram shows ⟨𝑠⟩, versus ⟨R⟩ for different 
values of μ. 

  
4 Multifractal Analysis 
 
 Different methods to detect multi-affinity in complex 
systems have been introduced, such as spectral analysis 
[42], fluctuation analysis [43], wavelet transform 
module maxima [44], and multifractal analysis [45,46]. 
The fractal dimension obtained from the box-counting 
method ignores irregularities smaller than the size of r. 
Therefore, the number of points found in the boxes that 
cover the shape are not proportional to each other. To 
investigate any irregularity in the resulting porous 
structures of the BD-PLN model, multifractal analysis 
is implemented. The multifractal dimension is defined 
by the following equations: 
 

𝐷௤ =
1

q-1
𝜏௤     for      𝑞 ≠ 𝑙,                                   (8) 

 

𝜏௤ = limr→0
𝑙𝑜𝑔 𝑍𝑟, 𝑞

-log r
,                                            (9) 

 

𝑍௥,௤ = ෍ (𝑧௜,௥)௤

௜
≈ 𝑟(ଵି௤)஽೜ ≈ 𝑟ఛ೜ ,                (10) 

  
where 𝐷௤ is the generalized dimensions, 𝜏௤ is the mass 

function, which is used to determine the behavior of the 
system, 𝑍௥,௤ is the structure-function, and 𝑧௜,௥ measures 

the proportion of occupied cells in the grid box i of size 

r. The parameter, q, belongs to the set of real numbers, 
and in this research, its changes is arbitrarily chosen in 
the range of (-5, +5). The value of 𝐷௤ is determined by 

the changes of q in this interval. D(q = 0) describes the 
capacity dimension, which is candid for the box-
counting dimension, D(q = 1) is equal to the information 
dimension, and D(q = 2) displays the correlation 
dimension. In multifractal analysis, there are multiple 
dimensions in the 𝐷௤versus q ranges, but monofractals 

dwell pretty flat in that area. The next section, discusses 
these parameters and fractal features of the BD-PLN 
model. 
 

5 Results and discussion  
 
 As discussed in Sec. II, the rod-like particles with 
variable lengths are deposited using the Monte Carlo 
algorithm in the ballistic deposition model. The length 
of particles follows from a power-law distribution, p (l) 

 ∼  μ l -(μ + 1), and as in Fig. 1 has been shown, the 
deposition of particles in the ballistic deposition model 
has led to the formation of a porous structure. To draw 
the contour loops, the BD-PLN model for different 
exponents μ was simulated, and by employing the 
Hoshen-Kopelman algorithm [39], contour loops were 
generated (Fig. 2). As in Fig. 2 has been depicted, the 
change of μ has an affection on the shape of the contour 
loops, when μ decreases, the space between the contour 
loops increases, and the tendency to stretch the loops in 
the vertical direction increases. 

 To calculate the fractal dimension of a contour loop, 
the pyramid and radius of gyration of different loops are 
checked under the influence of power-law noise. The 
fractal dimension of each loop, 𝐷௙, is identified by the 

logarithmic scaling of the average pyramid of the loop, 
⟨s⟩ , versus of the averaged loop radius, ⟨R⟩ (Fig. 3). The 
slopes of Fig. 3 show that the fractal complexity of the 
loop rises with increasing μ. The following power 
equation is obtained by drawing 𝐷௙ versus μ in Fig. 4 

and using the Table Curve Software, 
 

𝐷௙ = 𝜇௕ .                                                                           (11) 

 where a= 1.21± 0.01 and b= 0.09± 0.01. 

 
 



Rahimi et al./Journal of Interfaces, Thin films, and Low dimensional systems 7 (2) Winter & Spring (2024) 747-755 
 

751 
 

 
 
Figure 4. The dimension, 𝐷௙, respect to the 𝜇 exponent. 

 
 

 
Figure 5. The log-log diagram of the number of boxes, N(r), versus 
the box sizes, r. 

 
 
 To show the fractal complexity of the side-view of the 
BD-PLN model during the growth process, the fractal 
dimension of all loops by using the box-counting 
method is obtained. The log-log plot of the number of 
boxes, N(r), versus the size of the boxes, r, is depicted 
in Fig. 5. The fractal dimension of all loops in Gaussian 
noise is single-valued, but this stability is not observed 
in power-law noise. As shown in Fig. 5, by changing the 
values of μ, different slopes are obtained for the fractal 
dimension, d. The obtained relationship between the 
dimension, d, and the μ exponent is as the following 
equation: 
 
𝑑 =  𝑎 +  𝑏𝜇௖ .                                                               (12)   

   
where a = 1.82 ± 0.01, b = -0.34 ± 0.01, and c= -1.8 
± 0.2. Also as depicted in Fig. 6, the fractal dimension 
increases and is saturated at 𝜇 > μ

௖
= 3, and picks up 

a constant value, 𝑑 = 1.80 ± 0.01. The point μ
௖

= 3  

indicates the position where the power-law noise 
changes to a Gaussian one. 

 
Figure 6. The dimension, d, respect to the μ exponent. 

 The multifractal analysis is also performed to 
investigate the irregularity in the porous structure of the 
BD-PLN model. Before this, multifractal analysis has 
been done for the random deposition model with the 
power law noise, (RD-PLN) model, and the 
multiaffinity behavior for the height fluctuations with 
𝜇 < μ

௖
 has been observed [47]. As discussed in Sec. 

III., the fractal dimension obtained from the box-
counting method does not show local irregularities and 
only conveys the average information of the network. 
So to describe the mass changes with box size, r, in an 
image, and its behavior when the image was scaled or 
cropped and distorted by q value, the 𝐷௤ parameter is 

used. As illustrated in Fig. 7 the generalized dimensions 
are plotted versus q for different values of μ. For 
distorting the data set, the arbitrary value of q is chosen 
in the range of (-5, +5). Normally, the value of the 
symmetric interval q is taken to have the value of zero, 
which corresponds to the box-counting dimension, in 
the bracket. It has been considered that by taking the 
range of q wider and wider the measurement error 
caused by the large volume of measurement data is 
added, and could affect the multifractal spectrum [48].   
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  Figure 7 indicates that the non-linear state of the graph 
decreases with the increase of μ and converges to a 
certain value, which indicates the monofractal state and 
the emergence of Gaussian noise. While in μ ≤ 𝜇௖= 3, 
where the length of stacked rods is longer, a humped 
state is observed. This non-linear mode revealed the 
multi-affinity of the growth structure in μ ≤ 𝜇௖= 3 and 
the appearance of multifractal properties. 

 
 
Figure 7. The generalized dimensions, 𝐷௤, for different values of μ 
exponents. 

 

  The mass exponent, 𝜏௤ , is used to determine the 

behavior pattern of the system. Figure 8 shows the 𝜏௤ 

vs.  q for different values of μ exponents. As shown in 
Fig. 8, for q = 0, 𝜏(௤ୀ଴) =  −𝐷(௤ୀ଴) , where 𝐷(௤ୀ଴) is 

the dimension of the box-counting method. Also the 
normalization of Eq. (10) leads to for q = 1,  𝜏(௤ୀଵ) =

0, and for a complete uniform distribution, 𝜏௤  is 

obtained by using Eq. (8), 𝐷௤ = 
1

q-1
 𝜏௤ .  So the slopes of 

curves in Fig. 8 get a linear form for μ > 𝜇௖= 3, where 
the Gaussian noise appears and the generalized 
dimension, 𝐷௤, reaches a constant value. On the 

contrary, the nonlinearity of the graph in Fig. 8 for μ ≤
𝜇௖= 3 shows the tendency of the structure to a 
multifractal pattern.  Also, research has shown that the 
non-linearity of 𝜏௤  vs. q has led to an increase in the 

distribution range of the singularity spectrum of 
fractals, which is used to show the strength of the 
irregularities of the measure [49]. 

 

 
Figure 8. The mass function, 𝜏௤ versus q for different values of μ 

exponents. 

 

6 Conclusions 
 
 The contour loops in the BD-PLN model by using 
Monte Carlo and Hoshen-Kopelman algorithms have 
been simulated. In the BD-PLN model, rod-like 
particles with variant lengths were deposited, and the 
length of the particles was determined by a power-law 

distribution, p(l)  ∼  μl-(μ + 1). Using geometrical 
exponents including the fractal dimension of each loop, 
the fractal dimension of all loops in the contour set, and 
the multifractal dimension can characterize the 
complexity and morphology of porous structures. The 
results displayed that for μ ≤ 𝜇௖=3 where the length of 
rods was long, the porosity of the structure was 
enhanced, the fractal dimension of each loop, and the 
fractal dimension of the contour set decreased. Also, the 
relationship between these dimensions with the  μ 
exponent was formulated. In the following, the 
multifractal scaling analysis was performed and was 
shown that the multi-affinity strength increased, while 
the power-law noise dominated Gaussian noise, led to 
nonlinearity form in generalized dimension and mass 
exponent. Future research endeavors in the field of 
studying the geometrical exponents of contour loops on 
the ballistic deposition model with power-law 
distributed noise could lead to new perspectives and 
advancements, new avenues to explore and new 
questions to answer. 
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