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The time evolution of hard X-ray has been simulated using the NARX-GA hybrid 
neural network in the stable region of the plasma tokamak. Loop voltage and hard X-
ray measured by the tokamak diagnostics tools were selected as network inputs. The 
NARX network has been trained using the Genetic Algorithm (GA) and the time 
evolution of the hard X-ray up to 500 μs (MSE = 4.13 × 10ିହ) is accurately simulated. 
Increasing the confinement time is the particular purpose of applying tokamak to 
produce energy through fusion. The real-time application of this methodology brings 
us closer to this goal. Hard X-ray prediction can prevent plasma energy reduction. It 
can also reduce the severe damage caused by runaway electrons (RE) colliding with the 
tokamak wall. Early prediction of hard X-ray time evolution is critical in attempting to 
mitigate the REs potentially dangerous effects. 

1 Introduction 

 Runaway electrons are the undesirable product of 
plasma tokamak, which are generated by the thermal 
quench phenomenon and increasing electric field [1]. 
The collision of the runaway electrons with the plasma 
particles and the tokamak wall is followed by hard X-
ray radiation, according to the Bremsstrahlung 
phenomenon [2–7], which reduces the plasma energy. 

Hard X-ray radiation makes the tokamak environment 
dangerous because its energy can reach up to 100 KeV. 
In large tokamaks such as ITER, the runaway electrons 
current is about 10 MA [8–10], and their energy reaches 
about 10 MeV [11–17]. Therefore, the collision of these 
energetic electrons with the tokamak wall causes severe 
damage and melting the wall [18,19]. Thus, the control 
of runaway electrons has received much attention, and 
practical methods like magnetic perturbations [20–22], 
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massive gas injection [23,24], shattered pellet injection 
[25], and limiter biasing [26] are used to suppress them, 
while numerical models are designed to deal with REs 
[27–30]. 

 Numerous diagnostics measure the critical plasma 
properties to control confinement conditions, and the 
data obtained from them are recorded in a time series. 
Loop voltage coil and hard X-ray detector are the two 
diagnostic devices used in tokamaks. Loop voltage can 
be measured through a voltage loop coil, which is 
applied to calculate plasma resistance, ohmic heating, 
and to survey the runaway electrons. The NaI 
scintillator detector is utilized to record vital X-ray data. 
This device should be used to limit energy reduction and 
destructive effects caused by the generation of runaway 
electrons. X-ray radiation provides valuable 
information about runaway electrons. Plasma 
nonlinearity and complexity cause theoretical methods 
not to be able to determine and predict plasma time 
evolution. Therefore, having an accurate tool with 
reliable performance that can predict the time evolution 
of plasma tokamak properties can be a solution in this 
regard. Time series can be predicted by AR, MA, 
ARMA, ARIMA, and SARIMA methods. For example, 
to predict plasma modes, the ARIMA method has been 
used [31]. Artificial neural networks (ANN) have 
received a lot of attention in various sciences due to 
their great accuracy in solving classification, pattern 
recognition, and prediction problems. Artificial neural 
networks can predict the complexity of plasma behavior 
[27], and be used in real-time in the tokamak control 
system. Artificial neural networks have been applied to 
classify the TCV tokamak plasma confinement modes 
[32]. To predict the plasma disruption time in DIII-D 
tokamak [33] and J-TEX tokamak [34], also to model 
fusion in JET tokamak [35], and for modelling the 
vertical plasma displacement in HL-2A tokamak [36], 
artificial neural networks have been utilized. 

 Artificial neural networks can make intelligent time 
series prediction methods. They can resolve stochastic 
and nonlinear problems [37]. Also, ANN can be applied 
in real-time to control runaway electrons and predict the 
time of X-ray emission caused by these electrons. The 
prediction of HXR behavior in the IR-T1 tokamak was 
performed by the NARX neural network using the 
Levenberg-Marquardt optimization algorithm, which 
was the first time that this method was introduced for 
use in the tokamak control system [38]. Optimization 

algorithms such as the Levenberg-Marquardt algorithm 
that operate based on gradients may fall into the trap of 
local minima in the optimization stages and do not reach 
the desired result, but the evolutionary Genetic 
algorithm does not face such a problem [39]. In this 
research we trained the NARX neural network, which is 
designed and built to predict time series, by using the 
genetic algorithm (GA) and the network accurately that 
predicted the time evolution of hard X-rays. This 
method can be used in the tokamak control system in 
real time and can be effective in reducing the destructive 
effects of the runaway electrons in the tokamak. This 
methodology can increase plasma confinement time and 
increase tokamak quality efficiency. The genetic 
algorithm as an optimization algorithm has found a 
special place in various sciences [40–48].  

 This article is organized as follows: Section 2 is 
devoted to the generation of runaway electrons. Section 
3 introduces the NARX-GA hybrid neural network. 
Section 4 deals with how to simulate the time evolution 
of hard X-rays, and in the conclusion section, the results 
are presented. 

2 Runaway electron generation 

 Two known factors cause the first generation of 
runaway electrons in tokamak plasma: increasing the 
electric field and thermal quench. 

 A toroidal electric field is required to confine the 
plasma. If this field increases, the electric force can 
overcome frictional forces, and the electrons will run 
away [49,50]. The electric field required for electrons to 
reach a critical speed is called the Dreiser field. 
 

Eୈ =
neଷlnɅ

4π ∈ட
ଶ Tୣ

,                                                                (1) 

where, e, n, lnɅ, ∈°, Te, and are respectively the electron 
charge, electron density, Coulomb logarithm, vacuum 
permeability, and the electron bulk temperature 
The reasons for the rapid cooling of plasma in tokamaks 
are different [1]. Changing the position of the plasma 
and its collision with the tokamak wall can lead to the 
influx of particles and impurities into the plasma. 
Radiation caused by plasma colliding with impurities as 
well as energy transfer to the tokamak wall leads to loss 
of plasma heat energy [1]. This can cause the plasma to 
cool rapidly (in milliseconds), which is called a thermal 
quench. This dramatic decrease in temperature causes a 
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sharp increase in plasma resistance. Plasma current is 
related to an electric field through Ohm's law as 
 

𝑗௧ =
𝐸||

𝜌
.                                                                            (2) 

If E|| does not change, the increase in resistance causes 

a rapid decrease in the plasma current. However, the 
inductive property of the system prevents a significant 
change in current at such short time scales. It causes a 
sharp increase in the parallel electric field to maintain 
the current. Plasma current quench usually occurs much 
longer than thermal quench. Thus, there will be a strong 
electric field over a significant period that leads to the 
generation of runaway electrons. There is another 
process for the generation of runaway electrons, which 
is the second generation mechanism. In this process, 
secondary runaway electrons are generated by colliding 
of the existing runaway electrons with thermal electrons 
(Avalanche mechanism) [51–53].  

 Collision of runaway electrons with plasma particles 
and tokamak wall produces hard X-rays. The hard X-
rays received by the detector contain vital information 
about the runaway electrons. Therefore, the hard X-rays 
produced by the runaway electrons are used to study the 
time evolution of their collisions. For example, the 
resonant magnetic perturbation method is used to 
reduce the destructive effect of RE in the ASDEX 
tokamak, and by comparing hard X-rays with the case 
where resonant magnetic perturbations are not used, it 
can be seen that the X-ray energy is reduced [54]. The 
Argon injection method has been used to reduce the 
energy of runaway electrons in the DIII-D tokamak, and 
by measuring the hard X-ray after using this method, the 
reduction of the energy of the hard X-ray has been 
evident [55]. To calculate the energy of runaway 
electrons, hard X-rays produced by these electrons have 
been used in the JET tokamak [56]. The spatial 
distribution of runaway electrons in the DIII-D tokamak 
is studied by an array of HXR scintillators [38]. 

3 NARX-GA Hybrid Neural Network 

 The NARX is a dynamic network with feedback that 
the output is returned back as input [57]. Dynamic 
networks are efficient in predicting time series. The 
equation defined for the NARX network is as follows  
 

 y(t) = f( x(t-1), x(t-2), …, x(t-d), y(t-1), y(t-2), 
…, y(t-d)) 

(3) 

 
where the output value y(t) is obtained using the 
previous values of the output signal and the previous 
values of the input signal from the regression method by 
the network. The training of this network is supervised. 
To use the NARX, the network architecture and its 
inputs must be selected. After entering the inputs, the 
network randomly divides the inputs and outputs into 
three groups: train data, validation, and test. Train data, 
which is about 70% of the data, is used to train the 
network to determine the appropriate weights and 
biases. About 15% of the data, as validation data, 
evaluates the network training at the same time as the 
training process and prevents over-fitting. 15% of the 
data as test data. After the training process, evaluate the 
trained network. To optimize network performance, a 
quantitative criterion called performance function is 
used that compares network outputs with target data. To 
reduce the value of the performance index, various 
optimization algorithms are applied, such as the 
gradient descent algorithm, Newton algorithm, and 
Levenberg-Marquardt algorithm, which are based on 
the gradient. Such algorithms may be trapped in local 
minima during the optimization process. To overcome 
such a problem, evolutionary algorithms such as genetic 
algorithms can be used to train the NARX network. The 
genetic algorithm is inspired by the survival of a 
generation of more successful and graceful species. 
This algorithm starts the optimization by randomly 
generating an initial population of problem solutions in 
chromosome form. The chromosomal structure 
generated is evaluated, and the chromosomes that are 
closest to the problem solutions are selected as the 
parent generation. Parents, by using the processes of 
crossover and mutation, create the next generation of 
chromosomes (offspring), and this process continues 
until optimal solutions are reached. The use of genetic 
algorithms as optimization algorithms in artificial 
neural networks in various sciences has provided very 
accurate results and has received much attention. 

4 Results and discussion 

4.1 Inputs and architecture of the networks 

 The NARX-GA hybrid neural network was applied to 
simulate the time evolution of hard X-rays using 
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MATLAB software. For this purpose, it is necessary to 
select the appropriate inputs and determine the network 
architecture correctly, both of which have particular 
importance. The data recorded by the IR-T1 tokamak 
diagnostics were used to select the network input, which 
included plasma current (IP), loop voltage (Vloop), 
Mirnov coil data (MP), and data recorded by the hard 
X-ray (HXR) detector. Each IR-T1 tokamak diagnostic 
records measured data every half microsecond; 
therefore, in the stable region of the plasma, about 
twenty thousand data are recorded, which is the 
desirable statistical population. Network inputs can be 
determined by the correlation between the inputs and 
the target data or using the trial and error method. Since 
the current and energy of the runaway electrons depend 
on the temperature, density, and loop voltage [58], 
Vloop could be a proper option for selecting network 
input. To ensure this choice, we used the MATLAB 
software to get the correlation value between Vloop 
data and HXR data, which was an excellent value of 
0.94. So we selected Vloop as the network input. IP and 
MP data did not correlate well with HXR data and also 
were used by the trial and error method as network 
input. The best results were obtained using Vloop as 
input. Choosing the right network architecture plays a 
vital role in the quality of performance and speed of 
training. Table 1 shows the components used in the 
network architecture. 

Table1. Specifications and architecture of the NARX-GA 
network. 
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4.2 Simulation of hard X-ray time evolution 

 We repeatedly used the NARX-GA network to 
simulate the behavior of hard X-rays throughout the 
plasma time evolution in the stable region. We evaluate 
the network performance at all stages. According to the 
plasma current profile (Fig. 1 (a)), the stable region is 
seen. The tournament method was used to select the 

generations. In the production of the new generation, 
35% of the chromosome was used for mutation and 50% 
for crossover, and we considered 25 iterations as the 
stop criterion for network training. 

 

 
Figure 1. The time evolution of (a) Plasma current, (b) HXR 
intensity, and (c) Vloop. 

 

Figures 2, 3, and 4 show the prediction of 500 and 1000 
multi-steps of hard X-ray time evolution using 5000 
data from Vloop and HXR inputs in the stable region. 
The best results are obtained with 5000 data from each 
input [27]. In these figures, the blue dashed line 
represents the actual data (target), and the solid blue line 
represents the trained data of the NARX-GA network. 
The red dashed line denotes the real data during the 
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forecast period (real data), and the solid red line 
represents the predicted value of the NARX network 
(predicted). 
 

Figure 2.  Top, loop voltage. Bottom, simulation of HXR time 
evolution in the stable region of the plasma tokamak in the range of 
12500-13000 μs. 

 

 

Figure 3. Top, Loop voltage. Bottom, simulation of HXR time 
evolution in the stable region of the plasma tokamak in the range of 
15000-15250 μs. 

 

  

 

 

 

 

 

 

Figure 4. up: Loop voltage, down: Simulation of HXR time 
evolution in the stable region of the plasma tokamak in the range of 
17500-18000 μs. 

4 Conclusions 

 The NARX-GA neural network was used to simulate 
the time evolution of hard X-rays in the stable region of 
the plasma. An open loop coil is used to measure the 
plasma voltage, which is placed parallel to the plasma 
column. Any change in the plasma current causes a 
change in the magnetic flux passing through the loop 
voltage which can be seen in the time evolution of 
Vloop (Figs. 2-4). Based on the Bremsstrahlung 
phenomenon, collisions of runaway electrons with 
plasma components and tokamak wall produce hard X-
rays, which can be seen in the time evolution of HXR 
(Figs. 2-4). These collisions cause a change in the 
magnetic flux in the voltage loop and the fluctuations in 
the Vloop profile show the same. From the comparison 
of the time evolution of HXR and Vloop, it can be 
clearly seen that with changes in Vloop, HXR also 
changes. This is a confirmation of the accuracy of the 
operation and the accuracy of the diagnosis used. 
Figures 5 to 9 show the magnifying of the 500 steps 
from the forecast section of Figs. 2 to 4, which show 
that the network has been able to accurately predict 
when hard X-rays will occur and when no radiation has 
been emitted. The network was able to predict the trend 
and relatively severe fluctuations of hard X-ray time 
evolution with high accuracy. Tables 2 to 4 show the 
performance results of these predictions. The excellent 
performance of the training data reflects the high quality 



Alavi et al./ Journal of Interfaces, Thin films, and Low dimensional systems 5 (2) Winter & Spring (2022) 537-545 
 

542 
 

of the network training by the genetic algorithm. The 
performance of validation data also shows that over-
fitting has not been done and is a confirmation of the 
excellent quality of network training. Also, the 
performance of the test data is a confirmation of the high 
quality of the trained network. All of these 
performances indicate that the network architecture is 
significantly selected and the simulation results are very 
reliable. These results show the great capability and 
accuracy of the NARX-GA network. 

Table 2. The NARX-GA performance in the stable region in the 
range of 1000-13000 μs. 
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Table 3. The NARX-GA performance in the stable region in the 
range of 12500-15250 μs. 
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Table 4. The NARX-GA performance in the stable region in the 
range of 15000-18000 μs. 
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Time (micro second) 

Figure 5. Magnifying of the first 500 steps of the prediction section 
of Fig 2. 

 
Time (micro second) 

Figure 6.  Magnifying of the second 500 steps of the prediction 
section of Fig 2. 

 

Figure 7. Magnifying of the 500 steps of the prediction section of 
Fig 3. 

 
Time (micro second) 

Figure 8. Magnifying of the first 500 steps of the prediction section 
of Fig 4. 
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Time (micro second) 

Figure 9. Magnifying of the second 500 steps of the prediction 
section of Fig 4. 

 Due to the excellent results of the NARX-GA network 
in simulating the time evolution of hard X-rays, it is 
possible to use this methodology in the tokamak control 
system with confidence. Radiation can be prevented by 
accurately predicting the time of occurrence of hard X-
rays. The time evolution of hard X-ray determines the 
time of the collision of the runaway electrons with the 
plasma components or with the tokamak wall. In this 
paper, the time evolution of HXR is predicted. That is, 
the time of occurrence and energy of collisions can be 
predicted before their event. This method states that it 
is possible to predict the collision time of the runaway 
electrons with the plasma components and the tokamak 
wall in real time. Therefore, the tokamak control system 
can prevent a runaway electron collision just when it is 
predicted to occur using methods such as resonant 
magnetic perturbation, Argon injection, or other 
available methods. It can effectively reduce the 
damages caused by the collision of these electrons to the 
tokamak wall and the enormous costs.  
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