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The purpose of this article is to describe the relativistic corrections to the spectrum of 
bound states during hyperonization when interactions between quarks and gluons in 
semiquark-gluon plasma occur before experiencing color decay and color transformation 
between particles. I will consider this issue, according to the asymptotic behavior of the 
loop function in the scalar external gauge field based on the quantum field. This opinion 
was formed and presented using the projective unitary representation method and 
technique (oscillator representation method) based on the Schrödinger equations converge 
toward the semi-relativistic equation which can take into account some relativistic effects 
of mass and interaction in a coupled system. Such calculations represent the interaction 
between the hyperon and the nuclei core when the quark-gluon plasma cools down and 
we cannot see the free quarks and gluons, it occurs near the 150 MeV temperature in the 
quark-gluon plasma environment. The constituent mass and mass spectrum of hypernuclei 
are presented with relativistic corrections. It is a new calculation and description of a 
coupled state of hadrons based on quantum field theory and relativistic effect of 
interactions. 
 

1 Introduction 
 

 One of the main subjects of high energy physics is the 
investigation and study of hyperon and hypernuclei 
production in different experiments and measurements 
in the Relativistic Heavy Ion Collider. In this paper, 
results of the bound state investigation of light 
hypernuclei in high energy collisions and semi-quark-
gluon plasma are presented. The highest exotic states of 
hadronic matter are one of the important missions of 
relativistic and ultra-relativistic physics. In the high-
density, extremely hot quark-gluon plasma or very hot 
hadronic matter as we know can form exotic hadrons. 
Heavy hadrons are created by quarks in the quark-gluon 

plasma. Hypernuclei, consisting of hyperon and 
nucleon are a very important subject in nuclear physics 
and nuclear astrophysics. The exotic atomic and 
molecular bound states contain those which do not fit in 
the normal well-known hadronic states. So, they include 
the muonic atom, kaonic atom, multiquark states, 

hypernuclear states, and hyperatom states [1-5]. The - 
hypernuclear system is a nuclear two-component 
hadronic cluster that has previously been investigated in 
relativistic and nonrelativistic interactions with 
different potential models and methods such as quark-
meson coupling model, microscopic cluster model [4], 
MIT Bag model, and the Gaussian expansion method 
[6-7]. But there exists a method towards understanding 
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the hypernuclei states as di-hadron molecules reached 
from the approximate solution or perturbative methods 
in QCD and hadronic physics. It is widely believed that 
the oscillator representation method and quantum field 
theory is capable to extract the properties and specifics 
of hypernuclei systems with charged or non-charged 
hyperon, however, there exist theoretical and 
computational works on unusual nuclear-restricted 
states, for the most of their mass, eigenenergy, excited 
states, wave function [6-11].  

 
 Recently, light hypernuclei and hypernuclei clusters 
were produced as a hadronic-exotic bound state in the 
experimental cross-examination of high-energy 
hadronhadron collisions. These experimental 
observations on hypernuclei have been collected by 
SKS, FINUDA Collaboration, DAΦNE machine, 
PANDA Experiment, KEK, and by a new facility in 
Japan, J-PARC are expected that a higher aspect and 
new research fields will be given to hyper physics like 
the research and investigation on unusual hadronic 
systems properties and characteristics, which may be 
possible at new machines with higher energies. 
Therefore, the theoretical studies lead to greater 
awareness and interest in experimental analysis and 
interpretations of hypernuclei and hyperon-hadron 
interactions. Looking for the latest experimental data on 

hypernuclei, we study -hypernuclear as an exotic 
molecule bound system like a di-hadronic molecule: 
hyperon-core (- N). For the binding energy of the di-

hadronic state of -hypernuclei, we suggest using the 
asymptotic properties of Gaussian processes of the 
comparability and community correspondence currents 
in the field for the determination of the eigenvalue and 
binding mass in the ground and excited state of the di-

hadronic molecules two-body system -N with 
pseudoharmonic potential interaction. We also get a 
relativistic modification and adjustment to the mass of 
building blocks of the nuclear core (with 𝑚𝑒 ≈ 0) and 
- hyperon. The mass spectrum is determined from the 
Schrödinger equation with a mass of constituent 

components neutral N and -hyperon.  

 The exotic atomic and molecular states include those 
which do not fit in the normal well-known states. So, 

they include the muonic atom, kaonic atom, multiquark 
states, hypernuclear states, and hyperatom states [1-3]. 
The -hypernuclear system is a nuclear many-body 
state that has previously been studied in the 
nonrelativistic potential models and framework of 
different models and methods such as quark-meson 
coupling model, microscopic cluster model [4], MIT 
Bag model, and the Gaussian expansion method [5]. But 
there exists a method towards understanding the 
hypernuclei states as di-hadron molecules based on the 
perturbative methods in QCD at the hadronic scale. We 
use the oscillator representation method (ORM) and 
quantum field theory to determine the characteristics of 

the di-hadronic molecule system of -N with potential 
interaction. These exotic states are two-cluster bound 
states. The mass spectrum and constituent mass of 
particles in hypernuclei using the molecular 
pseudoharmonic-type potential between core and 
hyperon are investigated. The eigenenergy of 
hypernuclei is presented and defined from the 
Schrödinger equation for the bound state of constituent 

components hadronic nuclear N and -hyperon. 

2 Theoretical framework 

 Presently a set of experimental abilities exists. Let us 
study the properties of exotic hadrons consisting of light 
quarks based on the relativistic character of interaction. 
We know that the exposition of properties of exotic 
coupled states in an experimental model or quark-gluon 
plasma (QGP) environment with a strong constant of 
interaction is only a relativistic effect and is solved only 
within the framework of quantum field theory (QFT). 
Quantum field theory is one of the alternative methods 
for determining the bound state mass based on the 
nonperturbative and relativistic behavior of high-energy 
interaction. The issue of defining the mass of the bound 
state is an important problem that arises in describing 
the high-energy interaction. The mass spectrum of the 
particles as a bound state can be determined within QFT 
due to particle charge. Therefore, we presented the 
interaction of two charged scalar particles in a well 
known external field 𝐴𝛼(𝑥) and consider that the system 
of these particles creates a bound state and stable state. 
Based on QFT the mass of the coupled states can be 
described by the asymptotical action of the correlator, 
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the polarization loop (close two-point loop), for these 
particles in our gauge field. The scalar charged particles 
current is, for defining the coupled mass based on 
correlator (polarization loop function) which can be 
described by the Green’s function, all annihilation 
channels are neglected and Green’s function product of 
scalar particles with masses in the external field can be 
presented by averaging over the field 𝐴𝛼(𝑥) and restrict 
results to the lowest order terms, i.e. a two-point 
Gaussian correlation  
 

ർexp ൜𝑖 න 𝑑𝑥𝐴ఈ(𝑥)𝐽ఈ(𝑥)ൠ඀
஺

=  exp ൜−
1

2
න න 𝑑𝑥𝑑𝑦𝐽ఈ(𝑥)𝐷ఈఉ(𝑥

− 𝑦)𝐽ఉ(𝑦)ൠ.                                                              (1) 

 
                   

Here 𝐽
𝛼
(𝑥) is the actual current. The propagator of a 

gauge field has a form 

𝐷𝛼𝛽(𝑥 − 𝑦) = ൻ𝐴𝛼(𝑥)𝐴𝛽(𝑦)ൿ
𝐴

. 

The polarization loop function of a scalar particles in an 

external field Aα(x) reads 

Π(x) = ൻ𝐺௠భ
(𝑥ଵ, 𝑥ଶ|𝐸) ⋅ 𝐺∗

௠మ
(𝑥ଶ, 𝑥ଵ|𝐸)ൿ,     (2) 

 
 

and as we know, the Green’s function 

𝐺𝑚(𝑥1, 𝑥2|𝐴𝛼(𝑥)) is determined by  

቎൭𝑖
𝜕

𝜕𝑥௔
+

𝑔

𝑐ℏ
𝐴௔(𝑥)൱

ଶ

+
𝑐ଶ𝑚ଶ

ℏଶ ቏ 𝐺(𝑥, 𝑦|𝐴) 

= 𝛿(𝑥 − 𝑦),                                                              (3) 

where 𝑚 is the mass of a scalar particle, and 𝑔 is the 
coupling constant of interaction. For determination of 
the loop function, first of all, the solution of Eq. (3) 
isrepresented as a functional integral [11]: 

𝐺(𝑥, 𝑦|𝐴)

= න
𝑑𝑠

(4𝑠𝜋)ଶ

ஶ

଴

exp ቊ−𝑠𝑚ଶ −
(𝑥 − 𝑦)ଶ

4𝑠
ቋ

× න 𝑑𝜎ఉ exp ቊ𝑖𝑔 න 𝑑𝜉
ଵ

଴

𝜕𝑍ఈ(𝜉)

𝜕𝜉
𝐴ఈ(𝜉)ቋ,             (4) 

where 

𝑍ఈ(𝜉) = (𝑥 − 𝑦)ఈ + 𝑦ఈ𝜉 − 2√𝑠𝐵ఈ(𝜉), 

𝑑𝜎ఉ = 𝑁𝛿𝐵ሬ⃗ exp ቄ− 1
2ൗ ∫ 𝑑𝜉

ଵ

଴
𝐵ሬ⃗

̇ ଶ(𝜉)ቅ,               (5)  

with a normalization [11] 

𝐵ఈ(0) = 𝐵ఈ(1);  ∫ 𝑑𝜎ఉ = 1.                            (6)                 

Substituting Eq. (6) in Eq. (2) and carrying out an 
averaging on the field 𝐴ఈ(𝑥) for the polarization 
function with two-point closed loops, one can define 

П(𝑥) = න  
ஶ

଴

න
𝑑𝜇ଵ𝑑𝜇ଶ

(8𝑥𝜋ଶ)ଶ

ஶ

଴

exp ቊ−
1

2
|𝑥| ቆ

𝑚ଵ
ଶ

𝜇ଵ

+ 𝜇ଵቇ

−
|𝑥|

2
ቆ

𝑚ଶ
ଶ

𝜇ଶ
+ 𝜇ଶቇቋ 𝐽(𝜇ଵ, 𝜇ଶ), (7) 

where  

𝒇൫𝜇1,𝜇2൯ =

𝑁1𝑁2
  𝛿𝑟ሬሬ⃗ 1𝛿𝑟ሬሬ⃗ 2 exp ቐ− 1

2 ∫ 𝑑𝜏𝑥
0 ቌ𝜇1𝑟ሬሬ⃗ ̇ 2

1(𝜏) +

𝜇2𝑟ሬሬ⃗ ̇ 2

2(𝜏)ቍቑ exp ቄ−𝑊1,1 + 2𝑊1,2 − 𝑊2,2ቅ,   (8)             

here 𝑊௜,௝ is a potential for interaction and reads [11]  

𝑊௜,௝ =
௚మ

ଶ
(−1)௜ା௝ ∫  

௫

଴ ∫ 𝑑𝜏ଵ𝑑𝜏ଶ
௫

଴
𝑍̇ఈ

(௜)
(𝜏ଵ),  

𝐷ఈఉ ቀ𝑍(௜)(𝜏ଵ) − 𝑍(௝)(𝜏ଶ)ቁ 𝑍̇ఉ
(௝)

(𝜏ଶ).                 (9)   

        
Then the mass of a coupled system is determined 
through the natural logarithm of the polarization 
function 

𝑀 = − 𝑙𝑖𝑚
|௫ି௬|→ஶ

𝑙𝑛 П (𝑥 − 𝑦)

|𝑥 − 𝑦|
.                              (10) 
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The functional integral form of the polarization function 
and Green’s function can describe all the above 
equations similar to the Feynman path integral in 
unrelativistic quantum mechanics for acting two 

partiсles with masses μ
1

, μ
2
 and interactions between 

these partiсles are described by 𝑊𝑖,𝑗, which contain both 

potential, and un-potential interaction parts. Pay 

attention to the limited behavior of |𝑥 − 𝑦| → ∞ from 
Eq. (10), the mass of a coupled system is determined as  

𝑀 = ඨ𝑚ଵ
ଶ − 2𝜇ଶ

𝜕𝐸(𝜇)

𝜕𝜇

+ ඨ𝑚ଶ
ଶ − 2𝜇ଶ

𝜕𝐸(𝜇)

𝜕𝜇

+ 𝜇
𝜕𝐸(𝜇)

𝜕𝜇
+ 𝐸(𝜇),          (11)

  

where the parameter 𝜇 is the reduced mass and 
determined as 

1

𝜇
=

1

𝜇ଵ
+

1

𝜇ଶ
=

1

ට𝑚ଵ
ଶ − 2𝜇ଶ 𝜕𝐸(𝜇)

𝜕𝜇

 

+
1

ට𝑚ଶ
ଶ − 2𝜇ଶ 𝜕𝐸(𝜇)

𝜕𝜇

.                                           (12)  

 
Parameters 𝜇ଵ, 𝜇ଶ are the component's mass of the 
coupled system and  𝑚ଵ, 𝑚ଶ are the rest masses. 
𝐸(𝜇ଵ, 𝜇ଶ) = 𝐸(𝜇) is the eigenvalue of the 
nonrelativistic Hamiltonian  defined by  

𝑙𝑖𝑚  |ೣ|→ಮ
𝐽(𝜇ଵ, 𝜇ଶ)

= 𝑐𝑜𝑛𝑠𝑡. exp൫−|𝑥|𝐸(𝜇ଵ𝜇ଶ)൯.                                (13) 

                                                       

3 -hypernuclei as molecular states  

 The -hypernuclei as a di-hadronic molecular system 

consisting of ordinary -N are studied. According to the 
idea of quantum theory of scalar fields and the oscillator 
representation method, the mass spectrum is 

determined. Similar to this concept, solution of the 
hydrogen atom mass spectrum problem was discussed 
by Fock via variables representing and transformation 
into a four-dimensional momentum space, for details 
see [6]. We know that the quantum harmonic oscillator 
Hamiltonian reads4 
 

𝐻෡ ≅
 𝑝̂ଶ

2𝜇
+

𝜇

2
𝜔଴

ଶ𝑟ଶ − 𝐸଴௡(𝜇).                             (14) 

 

Here, the -hyper molecule Hamiltonian is based on the 
semi-relativistic Schrödinger equation in the 
pseudoharmonic potential between the two hadrons -
N assumed as 

𝐻෡𝛹 = 𝐸௡𝛹   ⇒ 

𝐻෡𝛹 = ൬𝑀 −
1

2
(𝜇ଵ + 𝜇ଶ) −

1

2

𝑚ଵ𝜇ଶ + 𝑚ଶ𝜇ଵ

𝜇ଵ𝜇ଶ
൰ 𝛹 

𝐻෡ =
 𝑝̂ଶ

2𝜇
+ 𝑉଴ ൬

𝑟

𝑟଴
−

𝑟଴

𝑟
൰

ଶ

− 𝐸଴୬(𝜇),             (15) 

         

where 𝑀 is the mass of hyper-molecule bound state, 

𝑚1, 𝑚2 are the masses of -N. 𝜇
1

, 𝜇
2
 are the constituent 

masses of -hyperon and core N. 𝜇 is the reduced mass, 

𝐸0𝑛(𝜇) is the excited eigenenergy of n- state in the first 

approximation of ORM, 𝑟0 is the equilibrium 

intermolecular -N separation, which could be 

calculated by the empirical formula 𝑟0 = 0.59 +

0.83𝐴1/3 in Eq. (15) and it can be defined by 

experimental data, 𝑉0 is the dissociation energy 

between -N or the absolute value of the binding energy 

𝐵Λ of a hypernuclear system [7]. 

 In Eq. (14) we have not added the spin-orbit 

interactions. After variables representing 𝑟 = 𝑞ଶక and 
transformation into axillary 𝑑-dimensional space in 

ORM, 𝜉 =
ௗିଶ

ଶ(ଵାସℓ)
= 1/2, then Eq. (14) reads: 
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𝐻෡௤ =
𝑝̂௤

ଶ

2
+  4𝜇𝜉ଶ𝑞ොସఘିଶ ൭

𝑉଴

𝑞଴
ଶ

𝑞ොଶ +
𝑞଴

ଶ

𝑉଴
𝑞ොିଶ − 2𝑉଴

− 𝐸଴௡(𝜇)൱

= 𝐻଴ + 𝜀଴(𝐸, 𝜇)+: 𝐻ூ:              (16) 

 

where 𝑞ො, 𝑝ො
𝑞
 are canonical operators and can be 

presented by 𝑎ො+ and 𝑎ො− operators: 

 

𝑎ොି = ෍〈𝑞|𝑝〉𝑎ොି =

௞

2ିଵ/ଶ൫𝑄෠ + 𝑖𝑃෠௤൯, 

𝑎ොା = ෍ 𝑎ොା〈𝑝|𝑞〉

௞

= 2ିଵ/ଶ൫𝑄෠ − 𝑖𝑃෠௤൯,             (16 ∗) 

 

where    
 

𝑞ො = ቂ
𝑚𝜔଴

ℏ
ቃ

ଵ/ଶ

𝑄෠ = ൤
2𝑚𝜔଴

ℏ
൨

ଵ/ଶ

(𝑎ොା + 𝑎ො ), 

𝑝̂௤ = [ℏ𝑚𝜔଴]ଵ/ଶ𝑃෠௤ = 𝑖 ቂ
𝑚𝜔଴

2ℏ
ቃ

ଵ/ଶ

(𝑎ොା − 𝑎ො ). 

 

The canonical variables as Wick ordering condition are 
obtained in Eq. (16), and then  

𝑟 = 𝑞ଶఘ,    𝑞ො =
𝑎ොି + 𝑎ොା

ඥ2𝜔଴

, 𝑞ොଶ ≅
𝑑

2𝜔𝜔଴
,  

𝑝̂ = ඥ2𝜔଴

𝑎ොି − 𝑎ොା

2𝑖
,      𝑝̂ଶ ≅   

𝑑

2
𝜔଴ 

 

here, 𝑝̂௤
ଶ is the relative momentum of -N, 𝐻0 =

𝜔0൫𝑎ො+
𝑎ො−

൯ is the energy of the free oscillator, : 𝐻𝐼: is 

the interaction Hamiltonian, 𝜀0(𝐸, 𝜇) is the ground state 
energy of the bound state in ORM and is the higher level 
of variational approximation for the vacuum energy of 
the Hamiltonian. In this article ground and excited states 
are described by the full Hamiltonian in the normal 
form, which does not contain any perturbation order and 

terms with the order of 𝑞2𝑚, 𝑚 < 1, i.e., : 𝐻𝐼: ≈ 0 in 

ORM [6]. Then, the energy of the ground 𝑛 = 0 and 
𝑛 > 0 excited state in the zeroth approximation of the 
ORM, is obtained by minimizing the expectation value 
of Hamiltonian: 

𝜀଴(𝐸, 𝜇) =
𝑝̂௤

ଶ

2
+ 

𝑉଴

𝑞଴
ଶ 𝜇𝑞ොଶ − 2𝜇𝑉଴ − 𝜇𝐸଴௡(𝜇) = 0

⇒ 

𝜀଴(𝐸, 𝜇) =
(1.5 + ℓ)𝜔଴

2
+  𝜇

𝑉଴

𝑞଴
ଶ

(1.5 + ℓ)

𝜔଴
− 2𝜇𝑉଴

− 𝜇𝐸଴௡(𝜇) = 0,                          (17) 

                   

where 𝜀0(𝐸, 𝜇) is the free oscillator Hamiltonian or the 
minimum energy of the exotic molecular bound state 
(i.e., is the vacuum energy of the Hamiltonian and 
equivalent to the ground state energy). 

 We can formulate 𝜀0(𝐸, 𝜇) = 0, 
𝜕𝜀0(𝐸,𝜇)

𝜕𝜔0
= 0, and 

consider all quadratic terms completely included in the 
free oscillator. Therefore, the energy eigenvalues and 
the oscillator free frequency in the ORM read: 

𝐸଴௡(𝜇) =
(1.5 + ℓ)𝜔

2𝜇
+

𝑉଴

𝑞଴
ଶ

(1.5 + ℓ)

𝜔
− 2𝑉଴

=
(1.5 + ℓ)ඥ2𝑉଴

𝑞଴
𝜇ି

ଵ
ଶ − 2𝑉଴ , (18) 

   

𝜔 = ඨ
2𝜇𝑉଴

𝑞଴
ଶ = 𝜇𝜔଴,                                           (18 ∗) 

                                                                                                                   
and the pseudoharmonic energy spectrum or the 
ground state energy in the zeroth perturbation order 
𝑗 = 0 in ORM [6] defines 

𝐸଴଴(𝜇) =
ଵ.ହඥଶ௏బ

௤బ
𝜇ି

భ

మ  − 2𝑉଴.                           (19)                

                                                                   

Then, the mass spectrum of -hypernuclear bound state 
in the zeroth approximation of ORM with recoil effect 
of nuclear core:  
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𝑀 = 𝜇ଵ+𝜇ଶ + 𝜇 𝐸̇଴௡(𝜇) + 𝐸଴௡(𝜇), 

𝜇ଵ = ට𝑚ଵ
ଶ − 2𝜇ଶ𝐸̇଴଴(𝜇), 

𝜇ଶ = ට𝑚ଶ
ଶ − 2𝜇ଶ𝐸̇଴଴(𝜇) ,                                                                    

𝐸̇଴଴(𝜇) =
డாబబ(ఓ)

డఓ
= −

(ଵ.ହାℓ)ඥଶ௏బ

ଶ௤బ
𝜇ି

య

మ.               (20)   
 

The parameters 𝑉0, 𝑞
0
 for combinations of -N are by 

reference [11] and the parameter 𝜇 is the root of the 
equation 

𝜇−1 = ቆ𝑚1
2 +

(1.5 + ℓ)ඥ2𝑉0

𝑞
0

𝜇
1
2ቇ

−
1
2

+ ቆ𝑚2
2

+
(1.5 + ℓ)ඥ2𝑉0

𝑞
0

𝜇
1
2ቇ

−
1
2

.             (21) 

Here we calculate the mass spectrum, the binding 

energy of -hypernuclei without recoil effect ℓ =

0 and results present in Table 1 therefore, we could 
define                                                                              

𝑀 = 

𝑚௖௢௥௘+𝜇௸ +
(1.5 + ℓ)

2𝑞଴
ඥ2𝑉଴𝜇ି

ଵ
ଶ − 2𝑉଴,         (22) 

𝐸௕௜௡ = 𝜇 +
(1.5 + ℓ)ඥ2𝑉଴

2𝑞଴
𝜇ି

ଵ
ଶ − 2𝑉଴,            (23) 

𝜇௸ = ට𝑚௸
ଶ +

ଵ.ହඥଶ௏బ

௤బ
𝜇ଵ/ଶ ,                               (24) 

 

𝜔଴ = ඨ
2𝑉଴

𝑞଴
ଶ 𝜇ିଵ/ଶ,                                                 (25) 

                               

and then calculate the numerical values of parameters 

of the -hypernuclei in the ground and excited states 

without recoil effect of nuclear core (𝑚2 = 𝑚core= ∞). 

Comparing the results of Tables 1, we see that the results 
obtained numerically and analytically in ORM 
concerning the ground state are in good agreement. 
 
Table 1. Calculated mass and energy spectrum, the constituent mass 
of -hyperon, binding energies for -hypernuclei, and oscillator 
frequency in ground states (in MeV). Theoretical and experimental 
data are taken from Refs [12,13,16,17]. 

 𝑴 𝝁𝚲 𝑬𝟎𝟎 𝑬𝒃𝒊𝒏 𝑴𝒆𝒙𝒑 𝑴𝒕𝒉𝒆𝒐𝒓𝒚 

𝑯𝒆𝚲
𝟖  7675.141 1115.720 14.239 7.443 7653.2 - 

𝑳𝒊𝚲
𝟖  7674.283 1115.721 13.622 7.183 7642.52 7663.42 

𝑩𝒆𝚲
𝟖  7673.151 1115.722 13.606 7.225 7642.86 - 

𝑳𝒊𝚲
𝟗  8610.527 1115.723 16.980 8.904 8578.69 - 

𝑩𝒆𝚲
𝟗  8612.957 1115.719 15.349 7.092 8563.69 - 

𝑩𝒆𝚲
𝟏𝟎  9547.436 1115.723 18.139 9.520 - 9531.28 

𝑩𝚲
𝟏𝟎  9546.744 1115.725 17.700 9.309 9500.15 - 

𝑩𝚲
𝟏𝟏  10483.526 1115.727 20.397 10.685 10429.69 - 

𝑩𝚲
𝟏𝟐  11420.373 1115.731 22.935 11.853 11356.91 - 

𝑪𝚲
𝟏𝟑  12358.299 1115.739 23.274 12.180 12278.95 12323.93 

𝑶𝚲
𝟏𝟔  15171.496 1115.743 26.301 13.778 - - 

 
 
 The defined results for the mass of hypernuclei 

including 𝐻𝑒Λ
8 , 𝐿𝑖Λ

8 , 𝐵𝑒Λ
9 , and 𝐵Λ 

10  are 7674.283, 
8612.957 and 9546.744 MeV respectively, while their 
experimental values given in [13] are: 7653.2, 7642.52, 
8563.69, and 9500.15MeV. We also investigate the 

binding energy of 𝐻𝑒Λ
8 , 𝐿𝑖Λ

8 , 𝐵ஃ 
ଵ଴ , 𝐵Λ

11 , 𝐶Λ
13 , and 𝑂Λ

16   as  
plotted in Figure 1 where the graph shows the mass 
number 𝐴 versus binding energy of bound state. Our 
theoretical calculation has been compared with 
theoretical and experimental data [15]. It may be 
mentioned that the results show a good agreement 
between the experimental and theoretical results. 
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Figure 1. The mass number of hypernuclei versus binding energy. 

 

4 Results 

 By considering the -N states as di-hadronic 
molecules, their binding masses are computed. The high 
energy interactions of hadrons in quark-gluon plasma 
environments have been studied based on the stationary 
phase approximation characteristics of Gaussian 
processes of the comparability and community 
correspondence currents in the field. An analytic 
method for determining the mass spectrum and 
constituent masses of exotic hadronic bound states is 
presented. While the hadronic binding energy has been 
taken from the experimental data, the pseudoharmonic 
of di-hadronic molecular eigen energies have been 
determined using different approaches such as ORM. 
The ORM method is suggested for the determination of 
the mass spectrum of -N states. The advantage of this 
procedure is its possibility to involve many different 
exotics-bound states. 

 Therefore, one has shown that the -hypernuclei 
masses can be effectively evaluated from the yields of 
ORM and QFT methods with ℓ = 0 and ℓ ≠ 0. The 
results demonstrated in Table 1 are identified and 
compared with other experimental data known as exotic 
hypernuclear atoms. These techniques and approaches 
can be applied for exotic multi hypernuclear systems, in 
which mass and eigenvalue were hard and difficult to 
evaluate and measure in previous hyper physics 
experiments. We believe such a kind of exotic multi 
hyperon nuclei would be possible at the new generation 
of ion accelerators of intermediate and high energies. 

One may be able to find many exotic di-hadronic states 
 𝐽௉஼ = 0ାା in these energies at the different sectors. 
Numerous hypernuclei have been identified with 
experimentally known exotic hadronic states. Among 
many combinations of hyperon-hadron nuclei and di-
hadronic states like two-atom bound states which can be 

investigated, only a few exotics -N state are described 
and introduced here in Table1.  

 Although the explanation and commentary on 𝑍ஃ
஺  is 

still doubted, I recognize it as Λ- 𝑍௓
஺ିଵ   like two-atom 

bound states (molecular state). Many other di-hadronic 

modes were predicted such as 𝑍௒௒ሖ
஺ , maybe 

experimentally identified. The theoretical masses of 
hypernuclei are to be determined. Some of them are 
compared with other theoretical works. Extensive 
research is going on to reveal the exact nature of exotic 
hypernuclei communication and connection. Therefore, 
the presented work describes hypernuclei as a multiplex 
complex quark state. The outcomes and obtained results 
are challenging and may throw light on our attempt 
towards understanding the fundamental main parts of 
new exotic matter, hypernuclei and the hyperon 
problem in neutron stars, long-lived hyper strange 
multiquark droplets, and strange quark matter. So,  
study of the properties of -N state is a significant 
instrument for our understanding of the structure of 
exotic atoms and light -N state,  strange compact stars 

and exotic -N interactions. Then, assuming the QFT, 
the numerical results based on calculation in this article 
for the 𝑛 = 1 state binding energies, hypernuclei mass, 

and the constituent mass of -particle considering Eqs. 
(9)–(12) are presented. The parameter 𝜇 including 
𝜇ଵ. 𝜇ଶ which can be determined by theoretical 
constituent masses for a rest mass of hypernuclei as  
seen from Eq. (7). To determine the main parameters of 

-N state, we use the QFT and ORM ground state 

binding energies of -N bound state. Therefore, we 
obtain a reduced mass. Considering the optimal reduced 
mass parameter and the potential parameter 𝑉଴ and 𝑞଴, 
we computed the theoretical analysis for the ground 
state of light -N state and compared them with 
theoretical and experimental data taken from [13-17].  
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 A good accordance between the experimental and 
theoretical data makes certain the reliability of the mass 
and eigenenergy extracted. In order to calculate the pure 

oscillator frequency and the eigenenergy of -particle 
in the light hyperon-hadronic state, we considered two-

body simple model -hypernuclear as an exotic 
molecule bound systems like a di-hadronic molecule: 

hyperon-core (-N), which is a utility model for those 
complications associated with the calculation of 
multiplex hadronic bound states. In Table 1, one can 

see, by increasing the mass number of  hyperon-core (-

N) states,  ( 𝐵𝑒ஃ
଼ , 𝐵𝑒ஃ

ଽ , 𝐵𝑒ஃ
ଵ଴ ) the value of the constituent 

mass of -particle and the value of energy eigenvalue 

𝐸଴଴ of -hypernucleus increases. 

 Also, by growing and increasing the proton number in 

the (-N) states ( 𝐻𝑒ஃ
଼ , 𝐿𝑖ஃ

଼ , 𝐵𝑒ஃ
଼ ) the value of the 

constituent mass of -hyperon increases. Note that, the 
characteristic of charge dependence of hyperon-core 

(-N) interaction, i.e. proton-hyperon bound state 
interaction with more protons is stronger than with more 

neutrons. For example, the 𝐿𝑖ஃ
଼  is higher than the 𝐻𝑒ஃ

଼  
despite the electrostatic repulsion of protons which 
necessarily induces reduction energy eigenvalue of the 

𝐿𝑖௸
଼ . 

 The criterion for selecting these heavy exotic di-

hadronic molecules is nothing but for their great 
importance in the hyper nuclear physics, strange stars, 

and neutron stars related areas, as we know 𝐻𝑒ஃ
஺  and 

𝐿𝑖ஃ
஺  are important di-hadronic molecules involved in 
many nuclear processes and some very essential topics 
in white dwarfs, neutron stars, and heavy-ion collision 
experiments.  

5 Conclusions 

 Cadmium telluride nanoparticles synthesized by the 
sonochemical method in this work showed different 
structural properties when compared to nanoparticles 
produced by the previous methods. One of the most I 
present recent theoretical studies on heavy hyperon 
hypernuclei. I discuss the use of the Wick ordering 
method to determine the mass spectrum and make a 

comprehensive study of light (-N) states in the ORM 

structure of interactions and potential models. The 
interaction model parameters, eigenenergy, and masses 
of the light (-N) states obtained from the respective 
hyperon-core mass predictions have been used and 
applied to study exotic hypernuclei characteristics and 
specifications. As we know in the new generation 
facilities, such as J-PARC, MAMI, JLab, and FAIR 
very soon some new hypernuclei systems could be 
experimentally discovered. We have carried out 
analysis for the one-dimensional Schrödinger equation 
with a pseudoharmonic potential where the restrictions 
on the V0. q0 parameters have been given. The problem 
is then solved in an axillary 𝑑-dimensional space and 

the bound state energy solutions of exotic -
hypernuclei are found under the influence of ORM. The 
relativistic energy levels, mass spectrum, and 
constituent mass are obtained. As a further application, 
we have determined the pure oscillator frequency of a 
few exotic -hypernuclei as di-hadronic molecules and 
developed an interest in these exotic molecules to be 
able to study better with the future research in the 
harmonic, molecular, Yukawa, and Coulombic 
potentials models. 
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