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In the present work, the effect of roughness in resonant tunneling diodes has been 
considered to track two main goals. At first, the roughness impact on the transport through 
these heterojunctions has been studied before investigating the roughness type effect. For 
calculating the electrical transport, the transfer matrix technique has been used in the 
simulations. Two different standard methods of deposition - Random deposition (RD), 
and Ballistic deposition (BD)- have been applied to generate two dissimilar rough 
interfaces. The scattering process reduces the transport probability. The conductivity as a 
function of voltage has also been calculated. Effect of interface roughness on the peak-to-
valley current ratio in the presence of roughness has been discussed. The results show that 
the scattering effect it significant. As the applied voltage increases, at first, the value of 
current reaches its maximum amount, and then with increasing the voltage, the current 
falls in a negative differential resistance region.  

1 Introduction 
 

 For many years the transport through resonant 
tunneling diodes (RTD) has been interested. The RTDs 
have been developed now for different applications 
such as high speed logic, high speed adders, analog-to-
digital conversion, and low power memory cells [1-3]. 
As all produced interfaces are rough, the RTD device 
designing requires to use the interfaces with desired 
properties. The transport properties and current density 
of these structures vary dramatically with interface 
roughness type [4, 5]. There are many various 
experimental and theoretical methods to generate rough 
thin films, for example solid on solid, random 

deposition with surface relaxation [6-10]. In RD model, 
particles are only allowed to stick on topmost of 
previous particles or on the substrate. As sideways 
sticking is not allowed, the columns grow 
independently. But, in the BD model, a particle falls 
down and sticks to the first particle or on the substrate. 
Therefore, the correlation occurs between columns 
laterally [11]. These growth methods have been selected 
based on the produced device applications. In the recent 
decades, the effect of growth method (and then the 
roughness type) has been studied on the RTDs. The 
results are dependent to the conditions of producing the 
surfaces/interfaces [12-15]. In the present work, it is 
interesting to study the different types of deposition 
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models that produce the RTD interfaces. The first and 
third interfaces of the structure have been considered 
rough. These interfaces have been produced with BD 
and RD standard models, respectively. Indeed, the 
effect of two different rough interfaces could be studied 
simultaneously. The portion of scattered component of 
transmission as a function of incident electron energies 
have been calculated. The I-V characteristic and the 
PVR ratio are affected by roughness scattering. Also, 
the position of rough interfaces has been investigated on 
the transport properties.  

 2 Calculations and results 

 The RTDs for non-perfect interfaces, have a current 
density as a function of the bias voltage V written as 
[16] 

𝑗(𝑉 ) =
𝑒𝑚∗𝑘𝑇

4𝜋ଶℏଷ
× 

න 𝑇(𝐸 , 𝑉 )
ஶ



× ln ൦
1 + exp [

(𝐸ி − 𝐸 )
𝑘𝑇ൗ ]

1 + exp [
(𝐸ி − 𝐸 − 𝑒𝑉)

𝑘𝑇൘
൪ 𝑑𝐸 , (1)   

Where, m* is the effective mass of the electron. 
m1=0.067m0 and m2=(0.067x+0.083x) are the effective 
masses associated to regions 1 and 2 respectively, while 
m0 is the free electron mass [16]. T(E,V) is the 
transmission probability which is calculated by the 
envelope function Schrodinger equation and the 
continuity conditions of wave functions (the transfer 
matrix method). 𝑉 = ∆𝐸[𝜃(𝑧 − 𝛿(𝑟))] is the height of 
roughness, 𝛿(𝑟) expressions the interface height 
roughness, ∆𝐸c is the usual band offset amongst the 
adjust layers. It is 60% of ΔEg=1.15x+0.37x2 (eV), 
where x is the aluminum content, 𝜃(𝑧) shows the unit 
step function. Here, the effect of interface roughness of 
the RTD contains of a GaAs/AlxGa1-xAs double barrier 
structure that has been numerically studied. The values 
of the used parameters are as following. The barrier 
thicknesses and quantum well have been considered 
five nanometers. The details of calculations have been 
illustrated in Ref. [17].  

 Figure 1 shows the transmission probability vs energy 
of incident electrons and the aluminum content of x. 
The first and third rough interfaces of the structure have 

been produced based on two standard models BD and 
RD, respectively. Therefore, as the two interfaces of 
RTDs have been considered rough, the roughness has a 
main effect on the transmission probability. The portion 
of scattering increases and the transmission probability 
decreases compared to the structures perfect interfaces.  

 

Figure 1. The transmission probability is calculated vs energy of 
incident electrons (ev) and aluminum content of x. 

 To illustrate the effect of roughness scattering, the 
scattered components of transmission probability vs 
energies of incident electrons have been shown in 
Figure 2 for two different values of x. The energy band 
gap ΔEg of alloys depends on the aluminum content of 
x. The value of gap is direct and indirect for x smaller 
than xc =0.45 and x bigger than xc =0.45, respectively 
[16].   

 Based on Figures 2, the predominant effect of rough 
interfaces is obvious. In the perfect case, the maximum 
achievable resonance of transmission probability is 
unity. But, in the presence of roughness, this value 
decreases for RTDs for two different of x.  The origin 
of the peaks and valleys of curves is as follows. The 
resonant tunneling happens when the energies of 
incident electrons match the wells lowest quasibound 
energy level. 
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Figure 2. The scattered portion of transmission is calculated vs 
energy of incident electrons (ev) and the aluminum content of x. 

Because of roughness scattering, the resonances 
(constructive interference) and anti-resonances 
(destructive interference) appear. The anti-resonances 
are called “Fano” phenomena [18]. Moreover, these 
descriptions can illustrate the resonant peaks in the I-V 
characteristic. Figure 3 illustrates the current density vs 
bias voltage.  
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Figure 3. The current density vs the bias voltage and aluminum 
content of x. 

 The scattering portion of current density has been 
shown in Figure 4 to present clearly the interfacial 
roughness effect on electrical conductivity. It can be 

seen that as the aluminum content increases, the current 
density Logarithm vs bias voltage v decreases. 
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Figure 4. The portion of scattered current density as a function of the 
bias voltage and Aluminum content of x. 

 As it can be seen through the tunneling phenomena, the 
energy of electrons corresponds to a quasi-bound level 
in the central layer (well) and therefore a peak appears 
in the (I-V) characteristics. With increasing the V, at 
first, the current shows a maximum rate and then for 
higher values of V, a negative differential resistance 
region (NDR) appears. In other words, at high electric 
fields, one can see that with further continuous increase 
of the electric field, the decrease of current across the 
device can be achieved in some systems. Because of the 
shape of the I-V curve, the NDR phenomena can be 
classified into NDR (N-shaped). Due to interface 
roughness, as the scattering increases, the total 
transmission probability and current density decreases 
consequently. Also, the current valley increases and the 
PVR ratio of current is smaller than the perfect case. As 
a conclusion, the roughness scattering influences the 
current valley of RTDs. Therefore, there is 
disagreements between theoretical expectations and 
experiments works of PVR ratio [17-20]. The interface-
roughness effects on resonant tunneling process has 
been detected in RTDs with a greater difference of 
energy-gap amongst the barrier and well layers [16, 21]. 
Also, the results show that, the changing of interfacial 
roughness types of first and third interfaces does not 
have the perceptible effect on the results of the transport 
properties.  
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3 Remarks   

 The study of transport properties of resonant tunneling 
diodes with rough interfaces has been carried out. 
Because of rough interfaces, the scattering process 
results in transmission probability decrease. Also, the 
conductivity as a function of voltage has been 
calculated. The I-V characteristic has been investigated, 
the roughness scattering mechanism affects the current 
valley value of RTDs and it may describe the 
differences of theoretic predictions of PVR ratio bigger  
than experiments. Also, the numerical results do not 
show the difference consequences when the interfacial 
roughness types of rough first and third interfaces 
changed. 
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