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We investigate the Josephson current in a superconductor/zigzag graphene narrow 

strip/superconductor (Sc-ZGNS-Sc) junction with vacancy defects. For this purpose, we 

extend a recursive Green’s function based numerical method to ZGNSs and take into 

account the effect of vacancies including random single vacancy distributions and also 

chain-like linear defects. We investigate how the Josephson current is affected by the 

length and width of the strip and the concentration of the vacancies. We find that the 

Josephson current exhibits an exponential dependence on the vacancy concentration. 

The exponent coefficient is a nonlinear function of the length of the lattice and the 

vacancy concentration. For the width dependence we find a linear relation between the 

Josephson current and the width of the ZGNS which propose a semi classical treatment 

of the electron transport in the system. Finally, we study the effect of chain-like linear 

defects and compare them with randomly distributed single vacancies. 

 

 
 

1 Introduction 
 

 Since its discovery, graphene, a single atomic layer of 

carbon atoms in a hexagonal lattice structure, has 

attracted much research attention, both theoretically 

and experimentally, due to its unique mechanical, 

thermal, and electrical properties [1, 2, 3]. The peculiar 

electronic structure of graphene has become a major 

cause of enthusiasm among scientists. Linear energy 

dispersion relation near the discrete Fermi points and 

chiral nature of charge carriers in graphene has been 
reported which have caused attractive phenomena [4, 

5]. Among the phenomena of graphene, the 

superconducting proximity effect is one of the most 

attractive properties from both basic and applied points 

of view. This phenomena has been studied 
theoretically [6] and experimentally [7] where good 

contacts between the superconductor electrodes and 

graphene have been established while the Josephson 
current through a superconductor-graphene-

superconductor junction has been measured. 

 In graphene, high carrier mobility at room 

temperature, and unique electrical properties make 

them a promising material for a variety of nano-

electronics applications [8]. At present, graphene can 

be synthesized in two ways: namely top-down method 
and bottom-up method. The top-down approach can 

involve the structural breakdown of graphite followed 

by the interlayer separation to produce graphene sheets 
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[9] while the bottom-up technique such as chemical 

vapor deposition, epitaxial growth and total organic 
synthesis implements carbon molecules as building 

blocks [10]. In the preparation processes of graphene, 

it is difficult to avoid defects. Various defects, such as 

vacancy defects [11, 12, 13], impurity defects [14, 15] 

and adsorption defects [16, 17], could be introduced. 

In most cases these unavoidable defects can influence 

the characteristics of the graphene, such as energy 

band structure, carrier mobility, thermal and electrical 

conductivities, electronic transport properties like the 

Josephson current and so on. On the other hand, the 

different types of defects could change the topology or 
the curvature and then change the geometric structure 

of graphene [18]. Perhaps even more importantly, 

nearest neighbor carbon atoms to defect rearrange 

themselves into a variety of different polygons, not 
only hexagons (pentagons, octagons and so on), to 

form different structures with lower energy states by 

changing the bonding geometry around the defect. The 

vacancy defects, which are a very basic type of defect, 
are discussed here. A vacancy defect is empty space of 

a carbon atom located in the inner part or on the edge 

of graphene, which usually either appears during 

synthesis process [19, 20], or artificially is produces by 

techniques like ion and electron irradiation or chemical 

approaches [12, 13, 21]. 

 The effect of short-range disorder on graphene’s 
conductance has been investigated in [22]. It was 

illustrated in [23] that the electrical conductance of 

graphene largely depends on the type and 

concentration of point defects. Single vacancy low 

concentrations noticeably do not degrade electron 

transport. In comparison, double vacancy induces a 

moderate reduction of 25–34% in graphene. By 
increasing the concentration of defects, the electrical 

conductivity can be reduced by a factor of about 2-3 

compared to low concentrations. Reference [24] 

investigates the disordered single-layer graphene 

Josephson junctions with dimension of � ≫ � and 

shows that if we consider the average current as a 

function of vacancy concentration, increasing vacancy 
concentration leads to power-law suppression of the 

critical current. 

 Reference [25] shows that the position and 

concentration of vacancies in graphene nanoribbons 
affect their transmission spectrum and thus their 

current-voltage characteristics. Motivated by this, we 

present in this paper a numerical study of the 

Josephson current in a graphene strip Josephson 
junction with different vacancy concentrations. 

 In our previous work [26], we examined the 

Josephson current for a graphene strip without 

vacancy, the results of which were in good agreement 
with the theoretical and experimental results obtained 

for graphene. Josephson current in a two dimensional 

square lattice contacting two superconductors was 

studied by Furusaki [27]. Generalizing the 
conventional recursive Green's function technique to 

superconducting systems, he developed a method to 

numerically study the DC Josephson current in dirty 
SNS junctions. The results showed an agreement with 

the estimations of analytic calculations. Extending this 

formalism to brick lattices, we study the Josephson 

effect in a narrow strip of graphene with arbitrary 

length � and width � < � for zigzag edges. 

Transfering the hexagonal lattice structure into a brick-

like structure conserves the lattice topology [28], 
which is responsible for the low-energy excitations of 

the graphene strip. With this method, we investigate 

the Josephson current in graphene strips with different 

length and different vacancy concentrations.  

 The paper is organized as follows. In section 2 we 

describe our numerical method to calculate the 

Josephson current using a lattice model which is a 

basic tool for the numerical study of the effects of 
vacancy defects. In section 3, results are presented 

followed by the related discussions. Finally, we end 

the paper with the main conclusions in section 4. 

2 Model and method 

 The system consists of a graphene nano stripe (GNS) 

coupled to two conventional s-wave spin-singlet 

superconductor leads as shown in Figure 1. We 
proposed a 2D array arranged in a brick-wall lattice. 

This lattice represents a special case of the honeycomb 

lattice [28, 29], both of which can be strained into each 

other through continuous deformation and support two 

Dirac points in the corners of the 2D Brillouin zone 

(Fig. 2). By this consideration, our starting point is the 

tight-binding Hamiltonian on the pristine (without 
vacancy) Sc-GNS-Sc system, which we include the 

possibility for different horizontal and vertical nearest 

neighbors hopping. The full Hamiltonian takes the 

form: 
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where �,�,�� (�,�,�- is a creation (annihilation) operator 

of an electron on site . �  (/, 0- with spin 1( � ↑ or	-. 
	
(	3-	 is the nearest neighbors hopping matrix 

element in the horizontal (vertical) direction and & is 

the chemical potential. Here, / and 0 are the cell 
counters in horizontal and vertical directions, 

respectively. The number of places in the transverse 

direction is as 45 � 1 and in the horizontal direction is 

as	47 � 1. So, the length of the normal region (�) is 

478� and its width (W) is	458�, where 8� is the lattice 

constant. The system has a strip geometry that confines 

the graphene electrons in a (large) length and a finite 

(small) width, so,	45 ≪ 47. The order parameter ∆�� is 

assumed to be constant in the left (Δ; for	/ � 0	) and 

right (Δ=>�? for  / @ 47		that	D is the phase difference 
between the left and right superconductors) 

superconductors and zero in the middle region (0 �
/7 � 47).  

 Imposing the current conservation law, one finds the 

Josephson current through the interface between the jth 

and (j+1)th cells, as follows [27, 30]: 

E � � F>	
GHII � �.�.�� ���,�,�

��
����

� 	���,�,�� �,�,� @	
�	 F>	GH	I 	I 	JK	LMNO(/, 0; /

��
���NO� 1, 0- �				 MNO(/� 1, 0; /, 0-Q,																																(2- 

  

where <…> means the thermal average	and	G �
1/VWJ  with 0W is the Boltzman constant, and J is the 

temperature. MNO(/, 0; /X, 0X- is the Nambu Green’s 

Function (2 Y 2	matrix) with the Matsubara frequency 

Z� � [VWJ(24 � 1- ( n= 0,		\1, \2, … - which in 

each region satisfies the equation of motion [27]: 

^_`a � bc,d �∆c,d�∆c,d∗ _`a � bc,d∗ ef`a(c, d; cX, dX-
� gc,h́gd,dj.																																						(k- 

Figure 1. Schematic illustration of the Sc-ZGNS-Sc junction which 

the order parameter in the left (right) superconductor is as  

Δ;(Δ=>�?- and in the middle normal region is zero. The unit cell is 

indicated with blue dashed lines. White empty circles are the 

Carbon atoms in the brick-wall lattice of the graphene strip. 

 It is possible to explicitly calculate the Green’s 

function of three separate regions. Substituting the 

connected Green’s function in Eq. (2) will compute the 
Josephson current.  The procedure has been outlined in 

detail in Ref [27] and also appendix A. We will here 

only outline the essentials in order to illustrate how we 

extend this numerical method to a brick-wall lattice 
and also how we include the vacancies. 
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Figure 2. Schematic structure of honeycomb lattice and brick-wall 

lattice. The sub lattices A and B in the unit cell and the basis vector 

c is represented in both lattice. The primitive unit cell is defined by 

the primitive vectors	lmlno	lp. 

 For the normal region we can think of unit cells as 

shown in Figure 1 which the /th cell consists of the 

sites (/, 0- with 0 � 0,… , 4q. Attaching the cells to the 

left superconductor one by one and using the cursive 
Green function method [31], Green's function of the 

middle region is: 

MNO(/, 0; /X, 0X-
� LFZ�r�,�jE � ��(0, 0X-
� �sMNO(/ � 1, 0; /
� 1, 0X-�sQ��,																																(4- 

where	��(0, 0′- � vH� 00 �H�∗x is the BdG 

Hamiltonian of  the /th cell with 

H� � �ty�δ{,{j�� � δ{,{j��� � �ε},{ � μ�δ{,{j and 

Hs � �	
 �1 00 �1� being the hopping between two 

neighboring cells. The effect of a vacancy is taken into 

account through the change in the hopping elements 	
 

and 	�. We consider two distinct approaches. In the 

first approach, removing of a single carbon atom is 

equivalent to disappearing of one vertical and two 

horizontal hopping elements. This attitude is perfected 

by forming a weak horizontal bond between the left 

and right atoms of the vacancy which is shown 

schematically in Figure 3 . The new bond has a 
modified hopping matrix element which is relative to 

	
 as 	
>�ℓ/� with ℓ being the length of the new bond 

while 8 is the lattice constant. Accidental placement of 

two or more holes in a horizontal row corresponds to a 

longer bond length, resulting in a smaller hopping 

coefficient.  

 Our next approach is based on the fact that in 

graphene, the formation of divacancies (DVs) are 

energetically more favorable than two separate 

vacancies (about 8 eV compared to 15 eV) [32, 33]. 

They can be created either by the coalescence of two 

single vacancies or by removing two neighboring 

atoms. The presence of such thermodynamically 

preferred DVs which causes a defective lattice to be 

cohesive are very common in reported experimental 
graphene samples [34, 12]. Removing an atom from 

the lattice causes the geometry around the vacancy to 

change so that all the dangling bonds are saturated as 

the lattice relaxes to a lower energy state. This lattice 
relaxation leads to non-hexagonal bond geometries and 

the formation of non-hexagonal rings, causing slight 

disturbances in the bond lengths around the vacancy 
(Fig. 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Removing of a single carbon atom of GNS lattice. In the 

first approach, one vertical and two horizontal hopping elements 

disappear. In the second approach, removing an atom from the 

lattice causes the geometry around the vacancy to change so that 

non-hexagonal rings are formed. 
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3 Results and discussion 

 We start with a pristine lattice by considering different 

lengths from 47 �10 to 120 and different widths from 

45 � 10 to 50.  The chemical potential in the normal 

region is set to be &� � 0.001	>� and for the 

superconducting regions, we assume & � 1.7	>�. This 

means that the Fermi wave vector in the S regions is 

large compared to the normal region and so we 

allowed to adopt a step function model for Δ at the 

interface [35].The temperature is J � 3.13	V (which is 
in the range of temperatures related to reference [36]) 

and we consider three different widths. The results are 

plotted in Fig. 4a for three values of the width (45/47
= 0.1, 0.2, 0.5). 

Figure 4. Normalized Josephson current density of Sc-pristine 

ZGNS-Sc junction in terms of (a) phase difference of 

superconductors with different ratio of width to the length of the 

ZGNS region and (b) the length of the graphene strip, with fixed 

n� � m�.	The current is scaled to I0 that is the current of pristine 

ZGNS with the width (the length) of ny=10 (nx=10) and � �
p . 

 The phase dependence of the Josephson current which 

deviates from the traditional sinusoidal form, is in 

good agreement with the predicted theoretical [37] and 

experimental [36] results. This feature is due to the 

low density of conduction channels near the Dirac 
point and exponentially-decaying evanescent states. 

 This relationship is maintained when the junction 
length L is shorter than the superconducting coherence 
length �, where � � H��/∆�, to allow coherent 
transport of superconducting pairs. It should be noted 
that the largest phase drop we can put over the whole 
structure is [. Qualitatively, Fig. 4a is in agreement 
with the numerical results shown in [37]. Reference 
[36] experimentally measures CPR of a graphene 
Josephson junction and shows that the CPR is 
skewed with respect to the commonly observed 
sinusoidal behavior. As seen, whatever the ratio of 
the stripe width to the length is greater, the 
maximum current is also greater, which is the 
same as the result obtained from Figure 8, in which 
it was shown that current has linear dependence 
on the width. Figure 4b shows the length 
dependence of the current in the short junction 
region. As can be seen, it decays exponentially 
with increasing length. In reference [37] it is 
shown that in low doping limit, & � 0, 
functionally, the I vs.L dependence form is also 
close to the traditional Ginzburg-Landau �>�;/�� 
form. 

Figure 5. Normalized Josephson current vs. the concentration of 
vacancies for three different lattice lengths of ZGNS (green 
dashed line for nx=10, red dashed line for nx=50 and blue dashed 
line for nx=100).  

exp(-0.58C) 

exp(-1.37C) 

exp(-0.95C) 

(a) 

� 

ny/nx=0.1  

ny/nx=0.2 

ny/nx=0.5 

(b) 
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Now we turn to the vacancy defects. We study how the 

presence of various distributions of vacancies 

influences the Josephson current of our system. Figure 

5, shows the Josephson current in terms of vacancies 

concentrations for three different lattice lengths (47 �
10, 50, 100). The vertical axes is normalized to the 

Josephson current of the perfect sample (E�). To 

achieve a satisfactory statistical behavior, we averaged 

on about 300 different random configurations of 

vacancy’s distributions to obtain each point in these 

curves. Vacancy concentration (C) which is the ratio of 

the number of vacancies to the number of all carbon 

atoms, varies from 0% to 5%.  Each single vacancy 

corresponds to formation of a two adjacent nine-
member and five-member neighboring rings (Figure 

3). As one can see in Figure 5, the first result is that the 

presence of vacancies leads to the reduction of the 

Josephson current. Here the dashed lines show the 

exponential fits and represent a decay coefficient for 

each vacancy concentration (γ). As seen, γ is a 

function of the graphene strip.  

Figure 6. Normalized Josephson current density vs. length of 

ZGNS for three different concentrations of vacancies (C=2%, 3%, 

5%, 7% and 10%). The dashed lines show the exponential fitting. 

 The longer ZGNS (nx=100) drops faster than those of 

shorter ones (nx=10, 50) and approaches to zero. 

Figure 6 shows this feature from a different viewpoint. 

The Josephson current through the defective ZGNS is 
plotted as a function of its length at different vacancy 

concentrations, C=2%, 3%, 5%, 7% and 10%. Each 

curve defines a localization length (�) exponent for a 

specific concentration which is not only a function of 

the system size but it depends on the vacancy 

concentration. The Josephson current is caused by 

Andreev bound states that characterize quasi-classical 

paths that start at one of the superconducting leads and 

return to the starting point after reaching the opposite 
superconductor. These Andreev paths constitute the 

supercurrent channels and the total phase change in 

each Andreev loop which is related to the mean free 
path of charge carriers between two superconductors 

that have to be an integer multiple of 2[. Increasing 

the vacancy concentration reduces the average free 

path of the electron, thus reduces the number of 
supercurrent channels and consequently the Josephson 

current. Therefore, it is not far-fetched that the 

dependence of the Josephson current on the length and 
concentration of vacancies is similar to the dependence 

of the conduction on these parameters [38]. 

 When a carbon atom is removed from the graphene 

stripe lattice, the probability of the carrier hopping 
from this vacancy is exponentially reduced. The results 

show that the same exponential reduction is reflected 

in Josephson's current. 

 Moreover, increasing the concentration of vacancies, 

quantum mechanically, corresponds to a greater 

correlation between them. This increase in correlation 

manifests itself in the enlargement of the exponent’s 

coefficient �. To better illustrate this result, in Fig. 7, 

we present the log plot of normalized Josephson 

current in terms of 47. Table 1 shows the numerical 

values of the localization length (which is the inverse 

of �). As can be seen, the localization length increases 

with increasing concentration of vacancies.  

 We also discuss the dependence of the Josephson 

current on the width of ZGNS (Figure 8). Our results 

show that the Josephson current increases linearly with 

increasing the width of ZGNS. It seems that we are 
dealing with a quasi-classical phenomenon. If we 

Table 1. Comparison of the exponent coefficient � and 

localization length � for different vacancy concentrations. 

The vacancy concentration         2%     3%         5%     7%         

The Coefficient (α )              0.025    0.023     0.012     0.0084    

 Localization length (nm)      40        43.48     83.33    119.05     
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consider each of the longitudinal lines of the ZGNS 

lattice as a transport channel that connects the left and 

right superconductors, the increase in lattice width 

corresponds to a linear increase in the number of these 

channels. 

The general Hamiltonian of the two-spin Heisenberg 
model with antisymmetric DM interaction and in the  

The 2- qubit isotropic Heisenberg model subjected to  

Figure 7. Plot of log (I/I0) as function of length of ZGNS for three 

different concentrations of vacancy: C=2% ( red circle), C=5% 

(blue square) and C=7% ( black triangle)). 

This linear increasing is also observed in the normal 

state resistance of ZGNR [39, 40]. At very narrow 
widths, which are not the subject of our discussion, the 

effect of borders is noticeable, and this classical view 

does not work. But in the mesoscopic dimension of 

perfect graphene strips, electron transport is quasi-
ballistic and is analyzed using the Landau-Büttiker 

formalism [41, 42]. Although the presence of 

vacancies changes the lattice linkages, but the linear 
behavior of the current with respect to the width 

remains true.  

 Now we consider divacancies which strongly disrupt 

the uniformity of C–C bonds around these defects in 
graphene lattice. When all the dangling bonds are 

saturated and no dangling bonds remain, in the place 

of these defects, two pentagons and one octagon 

appear instead of the previous four hexagons. In 

addition, the rotation of the created bonds also leads to 

the creation of various other polygons. Figure 9 shows 

schematically three types of these polygons in the 

graphene honeycomb lattice and their equivalents in 

our brick-wall lattice. Multiple DVs form an extended 

line of defects (ELDs). These defects can be fabricated 

by controlled focused electron beam irradiation [43] or 

single atom resolution aberration corrected 

transmission electron microscopy [44]. 

the magnetic field and DM interaction is modeled by 

the Hamiltonian: 

Figure 8. Normalized Josephson current vs. width of ZGNS for 

vacancy concentration C=5% and n� � 10. The current of ZGNSs 

is scaled to I0 that is the current of pristine ZGNS with the width of 

ny=10. 

 To find the relation between Josephson current and 

the formation of different ELDs, we have compared 

the Josephson current in three different ELDs with 

simple combination of single vacancies which place 
next to each other. As shown in Fig. 9, in each ELD, 

two neighboring atoms are removed which results in 

an eight-member ring in the lattice. In the first 
horizontal 5-8-5 ELD (Fig. 9a), the eight-member 

rings are on a horizontal line but in the other two 

vertical 5-8-5 ELD (Fig. 9b), and 4-8 ELD (Fig. 9c), 

the rings are all on the same vertical line. The 

difference between the last two is that in the vertical 5-

8-5 ELD, there is a vertical C-C bond between two 

neighboring DV rings, but in the 4-8 ELD there is no 
space between the DV rings. It can be seen that the 

number of vacancies in each ELD is equal to the 

number of 8-member rings formed. 

 Table 2 illustrates the comparison of the Josephson 

current in these three ELDs and the correspondence 

randomly distributed SVs. The lattice is considered as 

nx=60 and ny=40 with 6 vacancies that the 

concentrations of the vacancies in all four 
configurations are the same, but the Josephson currents 

are very different from each other. 
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 Using the physics, we described earlier, this 

difference is understandable. In the horizontal ELD, 

the removing of 6 carbon atom results in disconnection 

of only one transport channel, but in vertical ELDs, 

three transport channels are disjointed. Hence, we 
expect to have a larger Josephson current in the 

horizontal loop Josephson current in the horizontal 

loop. To compare vertical ELDs, it is necessary to 

pay attention to the fact that in 4-8 ELD, the 

vacancies are closer to each other, so the 

correlation between them is stronger and as a 

result the localization length is shorter and the 

current reduction due to this configuration will be 

greater. Calculating the current in a lattice of six 

holes randomly distributed in the lattice shows 

that the Josephson current in this case is less than 

the horizontal loop but more than vertical loop. 
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4 Conclusions 
 

 In this work, we investigate the effect of vacancy 

defects on the Josephson current of a Sc-ZGNS-Sc 
hetero structure. We found that the behavior of the 

Josephson current is a combination of semi classical 

and quantum treatments. When the width of the ZGNS 

increases, the semi classical part reveals as a linear 

increase of the Josephson current in terms the width. It 

seems that adding each row of lattice corresponds to 

adding a transport line and consequently a linear 

increase in Josephson current. This behavior is 

independent of the concentration of vacancies. 

However, the dependence of Josephson current to the 

length arises quantum mechanically from the 

 

Defect type     Configuration       Josephson current (�/��) 

 

Single vacancy            5-9                                0.82 

Double vacancy       horizontal 5-8-5               0.94                                   

                                   vertical 5-8-5                 0.3 

                                       5-8-4-8-5                   0.15 

Table 2. Comparison of Josephson current of 6 vacancy defects in 

ZGNR lattice with nx=60 and ny=40 for 4 different configurations. 

(a) 

(b) 
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exponentially decaying of the hopping matrix elements 

and also the correlation of vacancy places. These 
features are confirmed in the study of the Josephson 

current of linear chain of divacancies. Finally, we 

considered the role of linear chain of divacancies 

which is usually formed in real samples.  
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Appendix A 

 As given in reference [27], the Green's function can be 

calculated separately for each region (the left 

superconductor, the normal region, the right 
superconductor). Then, the Green function of the 

connected system is obtained which is needed in 

calculating the Josephson current. By starting from the 

left superconductor ( 0≤j ) which at first is not 

connected to the normal region (Figure 1) the Green 

function in the edge of the left superconductor is given 

by: 

MNO(0, 0; 0, 0X-
= I >���,��

	
Ω�,;�45 + 2�  ����
�� sinL£ (0 + 1-Q sinL£ (0X

+ 1-Q × v−Ω�,; − Z� F∆;F∆; Ω�,; − Z�x
− I >����,�¤

	
Ω�,;�45 + 2�
����

�� sinL£ (0 + 1-Q   sinL£ (0X

+ 1-Q × vΩ�,; − Z� F∆;F∆; −Ω�,; − Z�x,          (5- 

Where 2 2
, ( ) ( )Ω = + ∆n L R n L Rω , / ( 2)= +m yq m nπ , 

and , ( ) , ( )arccos[ ( 2 cos ) / 2 ]± = − + ± Ωm L R h m n L R hp t q tµ . 

Next we separate the normal region into cells in such a 

way that the jth cell consists of the site (j, k) (k=0…, 
ny) and attach the cells to the left superconductor one 

by one, see Figure 1. Then we obtain the Green's 

function in normal region that is given in model and 

method section.  

 Finally we attach the right superconductor to the semi-

infinite SN system. To this end we need the Green 

function for the right superconductor: 

MNO(47 + 1, 0; 47 + 1, 0X-
= I >���,¥�

	
Ω�,=�45 + 2�
����

�� sinL£ (0
+ 1-Q sinL£ (0X + 1-Q
× ^−Ω�,= − Z� F∆=>�¦

F∆=>��¦ Ω�,= − Z�
e

− I >����,¥¤

	
Ω�,=�45 + 2�
����

�� sinL£ (0
+ 1-Q sinL£ (0X + 1-Q
× ^Ω�,= − Z� F∆=>�¦

F∆=>��¦ −Ω�,= − Z�
e.                             (6- 

Then the Green function of the connected system 
which we need in calculating the Josephson current is 

obtained from the following two equations:  

MNO(47, 0; 47 + 1, 0X-
=         I {©MNO(47, 0; 47, 0X-ª����

�j��−  �XMNO(47 +  1, 0; 47 + 1, 0X-�X}�� × �X
×         MNO(47 + 1, 0; 47 + 1, 0X-,                        (7- 

MNO(47 + 1, 0; 47, 0X-
=                     I MNO(47 + 1, 0; 47 + 1, 0X-��

�j��
×                    �X{©MNO(47, 0; 47, 0X-ª��

−  �X MNO(47 + 1, 0; 47 + 1, 0X-�X}�� .          (8- 

The Josephson current is calculated from Eqs. (2), (7), 

and (8). 
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