لایه نشانی تیتانیوم کروم نیترید روی زیر لایه سیلیکون به وسیله کندوپاش مگنترونی رادیو فرکانسی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیک، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

لایه نازک سه تایی تیتانیوم کروم نیتراید روی زیر لایه سیلیکون (100) بدون دمای خارجی به وسیله کندوپاش مگنترونی رادیو فرکانسی نهشت شد. زیر لایه در فاصله 35 میلی متری از هدف قرار داده شد. ریخت شناسی رشد، ساختار کریستالی، زبری، زاویه تماس و ضخامت پوشش به صورت تابعی از توان رادیو فرکانسی ورودی و ولتاژ بایاس منفی مطالعه شد. نتایج پراش اشعه ایکس نشان می دهد که پیکهای پراش تیتانیوم کروم نیتراید فقط در نمونه های با بایاس منفی 70 ولت زیرلایه رویت شد. ریخت شناسی سطح به وسیله میکروسکوپ نیروی اتمی و میکروسکوپ الکترونی روبشی نشر میدان بررسی شد. فیلمها با افزایش ولتاژ بایاس منفی از آبدوستی به آبگریزی تغییر می کنند. زبری و زاویه تماس نمونه ها با کاهش توان رادیو فرکانسی از 300 وات به 200 وات افزایش می یابند. در هر دو حالت (الف) و (ب) آهنگ نهشت با افزایش توان هدف، افزایش می یابد.

کلیدواژه‌ها

موضوعات

[1] A.K. Tareen, G.S. Priyanga, S. Behara, T. Thomas, M. Yang, "Mixed ternary transition metal nitrides: A comprehensive review of synthesis, electronic structure, and properties of engineering relevance." Progress in Solid State Chemistry, 53 (2019) 1.
[2] P.J. McGinn, "Thin-Film Processing Routes for Combinatorial Materials Investigations—A Review." ACS Combinatorial Science, 21 (2019) 501.
[3] N. Witit-Anun, A. Teekhaboot, "Effect of Ti Sputtering Current on Structure of TiCrN Thin Films Prepared by Reactive DC Magnetron Co-Sputtering." Key Engineering Materials, 675-676 (2016) 181.
[4] N. Bensalah, F.Z. Kamand, N. Mustafa, M. Matalqeh, "Silicon–Germanium bilayer sputtered onto a carbon nanotube sheet as anode material for lithium–ion batteries." Journal of Alloys and Compounds, 811 (2019) 152088.
[5] B. Navinšek, P. Panjan, A. Cvelbar, "Characterization of low temperature CrN and TiN (PVD) hard coatings." Surface and Coatings Technology, 74-75 (1995) 155.
[6] S. Kislitsin, I. Gorlachev, V. Uglov, "Effects of Irradiation with Low-Energy and High-Energy Krypton Ions on the Structure of TiCrN Coatings." Acta Physica Polonica A, 128 (2015) 818.
[7] S. Chen, D. Luo, G. Zhao, "Investigation of the Properties of TixCr1-xN Coatings Prepared by Cathodic Arc Deposition." Physics Procedia, 50 (2013) 163.
[8] C. Mendibide, P. Steyer, J. Fontaine, P. Goudeau, "Improvement of the tribological behaviour of PVD nanostratified TiN/CrN coatings — An explanation." Surface and Coatings Technology, 201 (2006) 4119.
[9] T. Deeleard, S. Chaiyakun, A. Pokaipisit, P. Limsuwan, "Effects of Vanadium Content on Structure and Chemical State of TiVN Films Prepared by Reactive DC Magnetron Co-Sputtering." Materials Sciences and Applications, 04 (2013) 556.
[10] H. S. M. J. G. Han, H. M. Lee, L. R. Shaginyan, "Microstructure and mechanical properties of Ti–Ag–N and Ti–Cr–N superhard nanostructured coatings." Surface and Coatings Technology, 743 (2003) 174738.
[11] H.S. Choi, D.H. Han, W.H. Hong, J.J. Lee, "(Titanium, chromium) nitride coatings for bipolar plate of polymer electrolyte membrane fuel cell." Journal of Power Sources, 189 (2009) 966.
[12] A. Buranawong, N. Witit-anun, S. Chaiyakun, A. Pokaipisit, P. Limsuwan, "The effect of titanium current on structure and hardness of aluminium titanium nitride deposited by reactive unbalanced magnetron co-sputtering." Thin Solid Films, 519 (2011) 4963.
[13] X.-z. Ding, A.L.K. Tan, X.T. Zeng, C. Wang, T. Yue, C.Q. Sun, "Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc." Thin Solid Films, 516 (2008) 5716.
[14] A. Obrosov, R. Gulyaev, M. Ratzke, A. Volinsky, S. Bolz, M. Naveed, S. Weiß, "XPS and AFM Investigations of Ti-Al-N Coatings Fabricated Using DC Magnetron Sputtering at Various Nitrogen Flow Rates and Deposition Temperatures." Metals, 7 (2017) 52.
[15] A.Z. Ait-Djafer, N. Saoula, H. Aknouche, B. Guedouar, N. Madaoui, "Deposition and characterization of titanium aluminum nitride coatings prepared by RF magnetron sputtering.", Applied Surface Science, 350 (2015) 6.
[16] S. Chinsakolthanakorn, A. Buranawong, S. Chiyakun, P. Limsuwan, "Effects of Titanium Sputtering Current on Structure and Morphology of TiZrN Films Prepared by Reactive DC Magnetron Co-Sputtering." Materials Sciences and Applications, 04 (2013) 689.
[17] V.V. Uglov, D.P. Rusalski, S.V. Zlotski, A.V. Sevriuk, G. Abadias, S.B. Kislitsin, K.K. Kadyrzhanov, I.D. Gorlachev, S.N. Dub, "Stability of Ti–Zr–N coatings under Xe-ion irradiation, Surface and Coatings Technology." 204 (2010) 2095.
[18] J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, J.A. Rees, "Effects of the substrate to chamber wall distance on the structure and properties of CrAlN films deposited by pulsed-closed field unbalanced magnetron sputtering (P-CFUBMS)." Surface and Coatings Technology, 201 (2007) 6960.
[19] X.S. Miao, Y.C. Chan, E.Y.B. Pun, "Protective AlCrN film for organic photoconductors." Thin Solid Films, 324 (1998) 180.
[20] X. Chen, Y. Xi, J. Meng, X. Pang, H. Yang, "Effects of substrate bias voltage on mechanical properties and tribological behaviors of RF sputtered multilayer TiN/CrAlN films." Journal of Alloys and Compounds, 665 (2016) 210.
[21] Q.M. Mehran, A.R. Bushroa, M.A. Fazal, M.M. Quazi, "Scratch adhesion characteristics of PVD Cr/CrAlN multilayer coating deposited on aerospace AL7075-T6 alloy." Pigment & Resin Technology, 44 (2015) 364.
[22] Q.M. Mehran, A.R. Bushroa, M.A. Fazal, "Evaluation of CrAlN multilayered coatings deposited by PVD magnetron sputtering." Journal of Adhesion Science and Technology, 29 (2015) 2076.
[23] C. Zhuang, Z. Li, S. Lin, "Effect of annealing process on atomic-scale structure, dislocation and mechanical behaviour of nano-grained Al–Cr–N thin films." Surface Engineering, 33 (2016) 204.
[24] Y. Lv, L. Ji, X. Liu, H. Li, H. Zhou, J. Chen, "The structure and properties of CrAlN films deposited by mid-frequency unbalanced magnetron sputtering at different substrate bias duty cycles." Surface and Coatings Technology, 206 (2012) 3961.
[25] X. Wang, L.S. Wang, Z.B. Qi, G.H. Yue, Y.Z. Chen, Z.C. Wang, D.L. Peng, "Investigation on the structure and properties of AlxCr1−xN coatings deposited by reactive magnetron co-sputtering." Journal of Alloys and Compounds, 502 (2010) 243.
[26] M. Fellah, L. Aissani, M.A. Samad, S. Mechacheti, M.Z. Touhami, A. Montagne, A. Iost, "Characterisation of R.F. magnetron sputtered Cr-N, Cr-Zr-N and Zr-N coatings.", Transactions of the IMF, 95 (2017) 261.
[27] S. Khamseh, H. Araghi, "A study of the oxidation behavior of CrN and CrZrN ceramic thin films prepared in a magnetron sputtering system." Ceramics International, 42 (2016) 9988.
[28] S.M. Aouadi, K.C. Wong, K.A.R. Mitchell, F. Namavar, E. Tobin, D.M. Mihut, S.L. Rohde, "Characterization of titanium chromium nitride nanocomposite protective coatings." Applied Surface Science, 229 (2004) 387.
[29] G.A. Zhang, P.X. Yan, P. Wang, Y.M. Chen, J.Y. Zhang, "The structure and tribological behaviors of CrN and Cr–Ti–N coatings." Applied Surface Science, 253 (2007) 7353.
[30] C.H. Hsu, C.K. Lin, K.H. Huang, K.L. Ou, "Improvement on hardness and corrosion resistance of ferritic stainless steel via PVD-(Ti,Cr)N coatings." Surface and Coatings Technology, 231 (2013) 380.
[31] M. Huang, Z. Chen, M. Wang, Y. Li, Y. Wang, "Microstructure and properties of TiCrN coatings by arc ion plating." Surface Engineering, 32 (2016) 284.
[32] Q. Wang, F. Zhou, J. Yan, Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests." Surface and Coatings Technology, 285 (2016) 203.
[33] S.Y. Lee, G.S. Kim, J.H. Hahn, "Effect of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings." Surface and Coatings Technology, 177-178 (2004) 426.
[34] W.M. Sigmund, S.-H. Hsu, Cassie–Baxter Model, in: E. Drioli, L. Giorno (Eds.) Encyclopedia of Membranes, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 310-311.