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Introduction: In this study, we investigate the dynamics of the Entanglement in a two- spin 

system with long- range interaction. 

Method: For this purpose, we use the negativity as the entanglement measurement. Using 

the time evolution operator, we obtain entanglement dynamics of the system at time t. We 

consider two different initial states and investigate the dynamical behavior of the system 

for all of them separately. Finally, we consider both J and D as a function of R and then 

study the time evolution of the entanglement in different R. 

Results: We find that in the long range interaction, the R dependence of the dynamical 

behavior in the two systems is different. Depending on the initial states, the DM 

interaction and the magnetic field have no effect on the entanglement dynamics. 

1 Introduction 

 One of the most important predictions of modern 

quantum physics is the quantum entanglement [1]. 

Quantum entanglement is a quantum phenomenon in 

which the quantum states of two or more objects have 

to be described with reference to each other, even 

though the individual objects may be spatially 

separated. This results in quantum correlations 

between the observed physical properties of objects. 

Much effort is devoted describing the nature of the 

entanglement [2]. Quantum entanglement plays an 

important role in quantum information processing [3], 

teleportation [4], communication systems [5], quantum 

computer [6,7], quantum spin networks [8], security 

cryptography [9]. Therefore, significant research has 

been performed to understand quantum entanglement 

behavior in spin systems, such as all various kinds of 

Heisenberg (XX, XY, XXZ and XYZ) models, similar 

Ising models [10-12], and systems with Dzisloshinski-

Moriya interaction [13,14]. 

 Real physical systems are never isolated, as the 

connection between the system and the environment is 

inevitable. The quantum dynamics of physical systems 

is always complicated by their coupling with a number 

of «environmental» modes. Then, for realistic quantum 

systems, the loss of coherence is inevitable due to the 

interaction with the environment [15]. Recently, there 

has been more and more research on the dynamics of 

quantum entanglement under environmental influence 

[16-20]. 
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 In this paper, Entanglement is thus taken as a dynamic 

quantity on its own, as we survey how it evolves due 

to the unavoidable interaction of the entangled system 

with its surroundings. We analyze several scenarios for 

various initial states. In addition, we study the impact 

of spin distance on the dynamics of entanglement. 

Actually, we look at the exchange interaction as a 

function of the distance between two spins. This kind 

of interaction is known as long-term interaction. In 

recent years, long-term interactions have attracted a 

great deal of attention because they may produce new 

interesting phenomena [21-23]. In addition, some 

research has focused on the experimental application 

of spin systems that interact over long distances. 

Indeed, the inverse-square, trigonometric and 

hyperbolic interacting particle systems [25,26] and 

their spin generalizations [27-30] are important models 

of many-body systems due to their exact solvability 

and intimate connection to spin systems in condensed 

matter [31,32] and in other areas in physics. Therefore, 

studying the dynamical behaviour of systems with 

such interaction could be important. A major aspect of 

our analysis is that the entanglement does not 

disappear over time. 

 The paper is organized as follows: in the next section, 

we introduce the model Hamiltonian and describe 

briefly the techniques used to obtain the results 

discussed in the subsequent sections. In section III, we 

present and discuss the numerical results of modeling. 

Finally, Section 4 contains the concluding remarks. 

2 Model 

 Here, we consider a set of two localized spin- 1/2 

particles coupled through exchange interactions J, 

subjected to an external magnetic field of strength h 

with Dzyaloshinskii-Moriya interaction: 

� = ������	�
	 + ���	�
� − ����
	� + ℎ���� + �
��, (1) 

Where J(R) is the exchange interaction parameter that 

varies with the distance between spins, R, as       

���� = 1/�
. D is the Dzisloshinski-Moriya 

interaction parameter, and S is the spin-1/2 operator. In 

the base ket of �����  , the Hamiltonian matrix is formed 

as 

H =  
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On the other hand, to study the entanglement, one 

should obtain the density matrix of the system: 

$ = |Ψ' >< Ψ'| ,                                                      (5) 

where |Ψ' >is the initial state of the system 

Hamiltonian. In our system the density matrix is 

reduced to:  

$ =
11 14

22 23

32 33

41 44

0 0

0 0

0 0

0 0

ρ ρ

ρ ρ

ρ ρ

ρ ρ

 
 
 
 
 
 

 .                                   (6) 

Using the eigenvalues of the partial transpose of the 

density matrix, one can obtain the negativity of this 

model. Negativity is given by: 
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* = ‖$,‖ − 1
2 ,                                                                 �7� 

where ‖$,‖ is the trace norm or the sum of the 

absolute values of the operator $,. In following, we try 

to describe dynamics of the entanglement of this 

system. The dynamic evolution operator                    

U(t) = exp(−iHt) can be obtained as [33] 

   U= 

11 14

22 23

32 33

41 44

0 0

0 0

0 0

0 0

U U

U U

U U

U U

 
 
 
 
 
 

  ,                             (8) 

where  

.�� = .// = 012 �3
4 + 4 ℎ

� 2 4 �3
4 , 

.�/ = ./� =  #
� 2 4 �3

4 , 

.

 = .55 = 012 �3
4 , .
5 =  − �2 4 �3

4 , 

.5
 =  − �∗2 4 �3
4 . 

In the next section, we consider two different initial 

configurations and study the dynamics of the system 

for both configurations. We compare the results of 

each configuration. 

3 Discussion   

 Now, we consider two different initial states of the 

system and survey the time evolution of entanglement 

of the system for different parameters such as J, D, and 

h. Also, we consider J and D as a function of distance 

between two spins, R. 

Case 1:  

 Suppose that at time t = 0 the qubits are entangled 

together and initial state given by: 

|8�0�: = 1
√2 �|↑↓: + |↓↑:�.                                            �9�

Now, by applying the evolution operator on the |Ψ' >, 

we can obtainthe physical state of the system at time t 

as: 

|8�3�: = 1
√2 ?@cos Dxt

4 G − iαsin Dxt
4 GK |↑↓:

+ Dcos Dxt
4 G

− iα∗sin Dxt
4 G |↓↑:GL.                       �10� 

It is noticeable that by selecting the above initial state, 

the role of the magnetic field disappears in the time 

evolution of the entanglement. In fact, the change of h

does not affect the entanglement dynamics of the 

system. By having (t)ψ , we can calculate the density 

matrix of the system at time t, and then get a formula 

for the negativity as a function of t: 

2
2

2

4
1 sin

2

2

D xt

x
N

−
=  .                                       (11) 

Figure 1 shows the evolution of the Negativity when J 

and D are constant. As seen in the figure, the system 

has a regular behavior over time. Although the amount 

of the negativity drops highly at some times, but it will 

never be zero.  

 Then, we investigate the effect of the DM interactions 

on the dynamics of the negativity. Figure 2 shows the 

D dependence of the negativity evolution. Increasing 

the DM interaction, increases the amplitude of the 

entanglement oscillations. Indeed, the weaker DM 

interaction leads to more stable oscillations of the 

entanglement over time. In addition, the rise of D, 

reduces the time period of negativity. 

Figure 1. The time evolution of the negativity's in the system with 

initial state as |8�0�: = �
√
 �|↑↓: + |↓↑:�. We set J=1, D=0.5. 
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 When we study the time period of these oscillations, 

we observe that for J>D the time period diminishes by 

increasing D. But, for J≤ D, the time period remains 

constant. In fact, it may be said that J=D is a point 

where the behavior of the entanglement dynamics has 

changed.   

 

Figure 2. The D dependence of the negativity's time evolution with 

initial state as |8�0�: = �
√
 �|↑↓: + |↓↑:�. Set J=1. 

 

 Now, we investigate the dynamics of the negativity 

when the exchange interaction is a function of the spin 

distance, R as � = �
MN. The effect of the long range 

exchange interaction on the negativity dynamics is 

noticeable. As seen in Fig. 3, when the distance 

between two interacting spins increases, the time 

evolution of the entanglement becomes more unstable 

and the amplitude and time period of the oscillations 

increase. It shows the entanglement dynamics depends 

upon the distance between qubits. The rapid 

oscillations show rapid energy exchange between spins 

at very small distances. Indeed, reducing R is a 

positive factor to avoid the sharp and unstable 

oscillations of the entanglement dynamics. If we study 

the time period of these oscillations, we observe that 

for J>D and then R< 1/D, the time period decreases by 

increasing D. But, for J≤ D and then R≥1/D, the time 

period remains constant.  

 

Figure 3. The R dependence of the entanglement's time evolution 

with initial state as |8�0�: = �
√
 �|↑↓: + |↓↑:�. Set  � = �

MN . 

 

 In the next step, we consider both J and D as functions 

of R. It is noticeable that in different values of R, the 

amplitude of the fluctuations of the entanglement is 

mostly the same. But, by increasing R, the time period 

increases, see Fig. 4. 

Figure 4. The R dependence of the entanglement's time evolution 

with initial state as |8�0�: = �
√
 �|↑↓: + |↓↑:�. Set � = �

MN and � =
�

MN . 

Case 2: 

 

 Suppose that at time t = 0 the qubits are entangled 

together and initial state given by: 

|8�0�: = 1
√2 �|↑↑: + |↓↓:�.                                          �12� 

 Now, by applying the evolution operator on |Ψ' >, 

we can obtain the physical state of the system at time t. 

This initial state makes the effect of the DM 

interaction remove from the dynamic behavior of the 

entanglement. The negativity of the system with this 

initial state is: 
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 Like the previous section, we study the entanglement 

dynamics of this initial state in three modes: a) J and D 

are constant, b) = �
MN , and c) � = � = �

MN. First, we 

consider � = 1 and � = 1. As seen in Fig. 5, the 

dynamic behavior of this kind of initial state is 

oscillatory. Compared to the previous initial state, the 

time period and amplitude drop of the negativity are 

lower.  

 When the exchange interaction is dependent on R, the 

dynamic behavior of the negativity is as illustrated in 

Fig. 6. By increasing R, and therefore reducing J, the 

oscillations amplitude increases. Indeed, the less 

distance between spins leads to a stronger exchange 

interaction that leads to a more stable behavior of the 

entanglement dynamics along the time. Compared to 

the previous initial state, the amplitude drop of the 

dynamic fluctuations, especially in large R, is more. 

Similar to the previous initial state, when we study the 

time period of these oscillations, we observe that for 

J>h the time period decreases by increasing D. But, for 

J≤ h, the time period remains constant. In fact, it can 

be said that J=h is a point at which the behavior of 

entanglement dynamics has changed.   

Figure 5. The time evolution of the entanglement in the system 

with initial state as |8�0�: = �
√
 �|↑↑: + |↓↓:�. We set J=1, h=1. 

Figure 6. The R dependence of the entanglement's time evolution 

with initial state as |8�0�: = �
√
 �|↑↑: + |↓↓:�. Set  � = �

MN .                                                           

 As mentioned previously, in the system with such an 

initial state, the DM interaction does not influence the 

dynamic behavior of the negativity. In contrary, the 

magnetic field influences the dynamics of the 

negativity in the system with this new initial state. 

Figure 7 shows that in a weak magnetic field, the 

oscillations of negativity are greater than when 

exposed to a strong magnetic field. It can be said that 

the magnetic field has a positive effect on the 

dynamics of the entanglement in this system. Similar 

to the previous section, until R has satisfied the 

condition of J≤h (J=1/R2), the time period of the 

negativity oscillations is constant. As soon as J>R, the 

time period reduces by decreasing R (increasing J).  

Figure 7. The time evolution of the entanglement in different 

magnetic fields in the system with initial state as |8�0�: =
�

√
 �|↑↑: + |↓↓:�.  

0 2 4 6 8 10 12 14 16 18 20
0.44

0.45

0.46

0.47

0.48

0.49

0.5

t

N

  h=1 , J=1 

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

N

  h=1 , J=1/R
2
 

R=0.5

R=1

R=1.5

0 2 4 6 8 10 12 14 16 18 20

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

t

N

J=1 

h=0.5

h=1

h=1.5



Soltani et al./ Journal of Interfaces, Thin films, and Low dimensional systems 

 

328 

 

4 Conclusions 

 We considered two different initial states of the 

system and studied the dynamic behavior of the system 

for each of both situations, separately. It was 

interesting that in the system with initial state of 

|8�0�: = �
√
 �|↑↓: + |↓↑:�, the magnetc field  didn't have 

any effect on the entanglement dynamics while the 

DM interaction had the negative effect on the time 

evolution of the entanglement. In contrast, in the 

dynamic behavior of the system with initial state of 

|8�0�: = �
√
 �|↑↑: + |↓↓:�, the DM interaction has no effect 

on the entanglement dynamics, while the magnetic 

field was a positive factor to decrease the amplitude of 

the oscillations of the entanglement with time. In 

addition, we found that in the long range interaction, 

namely the exchange interaction was a function of the 

distance between two spins, the R dependence of the 

dynamic behavior in the two systems was different. In 

the system with |8�0�: = �
√
 �|↑↓: + |↓↑:�  as the initial 

state, increasing the spin distance caused the sharp 

drop of the oscillation amplitude of the negativity with 

time. Indeed, we can say that the high R, namely the 

weak exchange interaction, causes the unstable 

fluctuations in the entanglement dynamics of the 

system. Whereas, in the system with |8�0�: =
�

√
 �|↑↓: + |↓↑:� as the initial state, increasing the spin 

distance led to a more stable dynamic behavior in the 

system. Furthermore, when both J and D were 

functions of R, the change of R did not have any effect 

on the oscillation amplitude of the entanglement 

dynamics but increased the time period of the 

oscillations. 
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