Synthesis of crystalline Tellurium nanowires by thin film fabrication via thermal evaporation method

Document Type : Original Article

Authors

1 Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR) Shahid Beheshti University, Tehran, Iran

2 Research Institute of Applied Sciences (ACECR), Shahid Beheshti University, Tehran, Iran.

Abstract

Tellurium nanostructures have attracted much interest due to their interesting
properties such as gas sensing, photoconductivity, nonlinear optical response, and
high thermoelectric or piezoelectric responses. Crystalline Tellurium nanowires were
successfully synthesized at 10-1 mbar, 10-2 mbar, and 10-3 mbar pressures by thin film
fabrication via evaporation of Tellurium powder and its condensation on glass
substrates at different temperatures in a tube furnace. The morphology and size of the
products were studied using field emission scanning electron microscopy (FESEM).
The synthesized nanowires have diameters between 46 and 100 nm and lengths up to
several micrometers. X-Ray diffractometry (XRD) was carried out to characterize
crystal structure of the products. The peaks of the diffractogram were successfully
indexed assuming the hexagonal crystal structure of Tellurium.

Keywords

Article Title [Persian]

سنتز نانوسیم های کریستالی تلوریوم به وسیله ایجاد لایه نازک از طریق روش تبخیر حرارتی

Authors [Persian]

  • ناهید پارسافر 1
  • اکبر ابراهیم زاد 2

1 گروه فیزیک، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی

2 گروه فیزیک، پژوهشکده علوم پایه کاربردی جهاد دانشگاهی

Abstract [Persian]

نانوساختارهای تلوریوم به دلیل خواص جالبی همچون حسگری گاز، نوررسانایی، پاسخ نوری غیرخطی و پاسخ‌های بزرگ ترموالکتریک یا پیزوالکتریک توجه زیادی را به خود جلب کرده است. نانوسیم‌های کریستالی تلوریومی با موفقیت در فشارهای 0.1، 0.01 و 0.001 میلی بار به وسیله ساخت لایه نازک و روش ساده تبخیر پودر تلوریوم و چگالش بخار آن بر روی زیرلایه شیشه‌ای در دماهای مختلف در یک کوره لوله‌ای سنتز شدند. مورفولوژی و اندازه محصولات با استفاده از میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) مورد بررسی قرار گرفت. نانوسیم‌های سنتز شده دارای قطرهایی بین 46 تا 100 نانومتر و طول‌هایی تا چند میکرومتر هستند. پراش‌سنجی اشعه ایکس (XRD) برای مشخصه‌یابی ساختار کریستالی محصولات انجام شد. قله‌های نقشه پراش با فرض ساختار کریستالی شش وجهی تلوریم با موفقیت ایندکس شدند.

Keywords [Persian]

  • تلوریوم
  • نانوسیم
  • تبخیر حرارتی
  • کوره لوله ای
[1] R. R. Silva, H. A. G. Mejia, S. J. L. Ribeiro, L. K. Shrestha, K. Ariga, O. N. Oliveira Jr, V. R. Camargo, L. J. Q. Maia, C. B. Araújo, “Facile synthesis of Tellurium nanowires and study of their third-order nonlinear optical properties.” Journal of the Brazilian Chemical Society, 28 (2017) 58.
[2] G. Wei, Y. Deng, Y. H. Lin, C. W. Nan, “Solvothermal synthesis of porous Tellurium nanotubes.” Chemical Physics Letters, 372 (2003) 590.
[3] P. Mohanty, T. Kang, B. Kim, J. Park, “Synthesis of single crystalline Tellurium nanotubes with triangular and hexagonal cross sections.” The Journal of Physical Chemistry B, 110 (2006) 791.
[4] V. Kumar, S. Sen, M. Sharma, K. P. Muthe, N. K. Gaur, S. K. Gupta, “Tellurium nano-structure based NO gas sensor.” Journal of Nanoscience and
Nanotechnology, 9(2009) 5278.
[5] S. Sen, M. Sharma, V. Kumar, K. P. Muthe, P. V. Satyam, U. M. Bhatta, M. Roy, N. K. Gaur, S. K. Gupta, J. V. Yakhmi. “Chlorine gas sensors using one-dimensional Tellurium nanostructures.” Talanta, 77 (2009) 1567.
[6] X. Y. Liu, M. S. Mo, X. Y. Chen, Y. T. Qian, “A rational redox route for the synthesis of Tellurium nanotubes.” Inorganic Chemistry Communications, 7 (2004) 257.
[7] Z. Liu, Z. Hu, J. Liang, S. Li, Y. Yang, S. Peng, Y. Qian, “Size-controlled synthesis and growth mechanism of monodisperse Tellurium nanorods by a surfactant-assisted method.” Langmuir, 20(2004) 214.
[8] S. Ran, T. S. Glen, B. Li, T. Zheng, I. S. Choi, S. T. Boles, “Mechanical properties and piezoresistivity of Tellurium nanowires.” The Journal of Physical Chemistry C, 123(2019) 22578.
[9] P. K. Balguri, D. G. H. Samuel, D. B. Aditya, S. V. Bhaskar, U. Thumu, “Enhanced flexural strength of Tellurium nanowires/epoxy composites with the reinforcement effect of nanowires.” Materials Science and Engineering, 310 (2018) 012157.
[10] C. Yan , T. Yu, C. Ji, X. Zeng, J. Lu, R. Sun, C. P. Wong, “3D interconnected high aspect ratio Tellurium nanowires in epoxy nanocomposites: serving as thermal conductive expressway.” Journal of Applied Polymer Science, 135 (2018) 47054.
[11] Y. Wu, T. Guo, Y. Qiu, Y. Lin, Y. Yao, W. Lian, L. Lin, J. Song, H. Yang, “An inorganic prodrug, Tellurium nanowires with enhanced ROS generation and GSH depletion for selective cancer therapy.” Chemical Science, 10 (2019) 7068.
[12] V. A. Berezovets, Y. A. Kumzerov, Y. A. Firsov, “Electron Transport in Tellurium Nanowires.” Physics of the Solid State, 60 (2018) 256.
[13] Q. Wang, G. D. Li, Y. L. Liu, S. Xu, K. J. Wang, J. S. Chen, “Fabrication and growth mechanism of selenium and Tellurium nanobelts through a vacuum vapor deposition route.” The Journal of Physical Chemistry C, 111 (2007) 12926.
[14] C. Me´traux, B. Grobe´ty, “Tellurium nanotubes and nanorods synthesized by physical vapor deposition.” Journal of Materials Research, 19 (2004) 2159.
[15] A. W. Zhao, C. H. Ye, “Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition.” Journal of Materials Research, 18 (2003) 2318.
[16] B. Mayers, Y. Xia, “One-dimensional nanostructures of trigonal Tellurium with various morphologies can be synthesized using a solution-phase approach.” Journal of Materials Chemistry, 12 (2002) 1875.
[17] Z. Liu, Z. Hu, Q. Xie, B. Yang, J. Wu, Y. Qian, “Surfactant-assisted growth of uniform nanorods of crystalline Tellurium.” Journal of Materials Chemistry, 13 (2002) 159.
[18] M. Mo, J. Zeng, X. Liu, W. Yu, S. Zhang, Y. Quian, “Controlled hydrothermal synthesis of thin single‐crystal Tellurium nanobelts and nanotubes.” Advanced Materials, 14 (2002) 1658.
[19] Z. Wang, L. Wang, J. Huang, H. Wang, L. Pan, X. Wei, “Formation of single-crystal Tellurium nanowires and nanotubes via hydrothermal recrystallization and their gas sensing properties at room temperature.” Journal of Materials Chemistry, 20 (2010) 2457.
[20] F. Liang, H. Qian, “Synthesis of Tellurium nanowires and their transport property.” Materials Chemistry and Physics, 113 (2009) 523.
[21] A. V. Crua, D. Medina, T. J. Webster, J. L. C. Diaz, J. M. G. Martin, “Green synthesis of a synergetic structure of Tellurium nanowires and metallic nanoparticles for biomedical applications.” AIChE Annual Meeting, (2019).
[22] Y. J. Zhu, X. Hu. “Tellurium nanorods and nanowires prepared by the microwave-polyol method.” Chemistry Letters, 33 (2004) 760.
[23] T. Vasileiadis, V. Dracopoulos, M. Kollia, S. N. Yannopoulos, “Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/ sheath-TeO2 nanowires.” Scientific Reports, 3 (2013) 1209.
[24] M. Hunyadi, Z. Gácsi, I. Csarnovics, L. Csige, A. Csik, L. Daróczi, R. Huszánk, Z. Szűcs, “Enhanced growth of Tellurium nanowires under conditions of macromolecular crowding.” Physical Chemistry Chemical Physics, 19 (2017) 16477.
[25] Y. Li, W. Zhao, X. Mu, X. Liu, D. He, W. Zhu, Q. Zhang, “Synthesis and characterization of high-purity Tellurium nanowires via self-seed-assisted growth approach.” Journal of Electronic Materials, 45 (2016) 1661.
[26] U. K. Gautam, C.N.R. Rao. “Controlled synthesis of crystalline tellurium nanorods, nanowires ,nanobelts and related structures by a self-seeding solution process.” J. Materials Chemistry, 16 (2004) 2530.
[27] S. Sen, U. M. Bhatta, V. Kumar, K. P. Muthe, “Synthesis of Tellurium nanostructures by physical vapor deposition and their growth mechanism.” Crystal Growth & Design, 8 (2008) 238.
[28] X. L. Li, G. h. Cao, C. m. Feng, Y. d. Li, “Synthesis and magnetoresistance measurement of Tellurium microtubes.” Journal of Materials Chemistry, 14(2004) 244.
[29] P. Mohanty, J. Park, B. Kim. “Large scale synthesis of highly pure single crystalline Tellurium nanowires by thermal evaporation method.” Journal of Nanoscience and Nanotechnology, 6 (2006) 3380.
[30] K. R. Sapkota, P. Lu, D. L. Medlin, G. T. Wang, “High temperature synthesis and characterization of ultrathin Tellurium nanostructures.” APL Materials, 7 (2019) 081103.
[31] N. Parsafar, A. Ebrahimzad, “The effect of substrate temperature on fabrication of one-dimensional nanostructures of Tellurium.” International Journal of Nano Dimension, 2 (2012) 177.
[32] Y. J. Hsu, S. Y. Lu, “Vapor-solid growth of Sn nanowires: growth mechanism and superconductivity.” The Journal of Physical Chemistry B, 109(2005) 4398.