[1] L. Esaki, "A bird's-eye view on the evolution of semiconductor superlattices and quantum wells" IEEE Journal of Quantum Electronics, QE-22 (1986) 1611.
[2] L. Esaki, R. Tesu, "Superlattice and Negative Differential Conductivity in Semiconductors." IBM Journal of Research and Development, 14 (1970) 61.
[3] L. Esaki, L. L. Chang, "Quantum States of Confined Carriers in Very Thin AlxGa1-xAs-GaAs-AlxGa1-xAs Heterostructures." Physical Review Letters, 33 (1974) 495.
[4] L. Esaki, "Long journey into tunneling." Science, 183 (1974) 1149.
[5] J. W. Klos, M. Krawczyk, "Electronic miniband formation in a two-dimensional semiconductor superlattice." Materials Science-Poland, 26 (2008) 965.
[6] U. Behn, N. Linder, H. T. Grahn and K. Ploog, " Investigation of miniband formation in a graded-gap superlattice by electroreflectance spectroscopy." Physical Review B, 51 (1995) 17271.
[7] M. Holthaus, "Collapse of minibands in far-infrared irradiated superlattices." Physical Review Letters, 69 (1992) 351.
[8] X.-G. Zhao, "Phonon-induced collapse of minibands in superlattices." Physics Letters A, 230 (1997) 229.
[9] Yu. A. Pusep, A. J. Chiquito, S. Mergulhao, and J. C. Galzerani, "One-dimensional character of miniband transport in doped GaAs/AlAs superlattices." Physical Review B, 56 (1997) 3892.
[10] P. Hyldgaard and A. P. Jauho, " Elastic and inelastic resonant tunneling in narrow-band systems: application to transport in minibands of semiconductor superlattices." Journal of Physics: Condensed Matter, 2 (1990) 8725.
[11] Y. Shimada, K. Hirakawa, and S-W Lee, "Time-resolved terahertz emission spectroscopy of wide miniband GaAs/AlGaAs superlattices." Applied. Physics Letters, 81 (2002) 1642.
[12] H. T. Grahn, K. von Klitzing, and K. Ploog, G. H. Dohler, "Electrical transport in narrow-miniband semiconductor superlattices." Physical Review B, 43 (1991) 12094.
[13] S-Y Cheng, W-C Liu, W-L Chang, H-J Pan, W-C Wang, J-Y Chen, S-C Feng, and K-H Yu, " Observation of the impulse-like negative-differential resistance of superlatticed resonant-tunneling transistor." Applied. Physics Letters, 75 (1999) 133.
[14] M. A. Green, "Third generation photovoltaics: solar cells for 2020 and beyond." Physica E, 14 (2002) 65.
[15] F. Fuchs, E. Ahlswede, U. Weimar, W. Pletschen, and J. Schmitz, M. Hartung and B. Jager, F. Szmulowicz, "Magneto-optics of InAs/Ga1-xInxSb infrared superlattice diodes." Applied Physics Letters, 73 (1998) 3760.
[16] S. Tortora, F. Compagnone, A. Di Carlo, P. Lugli, "Theoretical study, modeling and simulation of SL quantum cascade lasers." Physica E 7 (2000) 20.
[17] E. Plis, S. J. Lee, Z. Zhu, A. Amtout, and S. Krishna, "InAs/GaSb superlattice detectors operating at room temperature." IEEE Journal of Selected Topics in Quantum Electronics, 12 (2006) 1269.
[18] X-B Cai, X-F Xuan, "Optical harmonic generation in a Fibonacci dielectric superlattice of LiNbO3." Optics Communications, 240 (2004) 227.
[19] X. I. Saldana, D. A. Contreras-Solorio, E. Lopez-Cruz, "Self-similar optical properties in Pascal-Type quasiperiodic dielectric multilayer." Revista Mexicana de Fisica S, 53 (2007) 310.
[20] D. K. Ferry, S. M. Goodnick, J. Bird, "Transport in Nanostructures, Second Edition, Cambridge University Press", New York, 2009.
[21] P. Harrison, Quantum Wells, Wires and Dots, "Theoretical and Computational Physics of Semiconductor Nanostructures, Second Edition, John Wiley & Sons, LTD", San Francisco, 2005.
[22] M. Solaimani, M. Izadifard, H. Arabshahi, and M. R. Sarkardei, "Study of optical non-linear properties of a constant total effective length multiple quantum wells system." Journal of Luminescence 134 (2013) 699.
[23] M. Solaimani, "GaN/AlN constant total effective radius multi-wells quantum rings: physical properties under well number variation effects" Solid State Communications, 200 (2014) 66.