Visible light photocatalytic activity of MWCNT/TiO2 using the degradation of methylene blue

Document Type : Original Article

Authors

1 Department of Physics, Alzahra University, Tehran, 199389, I.R. Iran

2 Department of Physics, Roudehen Branch, Islamic Azad University, Roudehen, I.R. Iran

Abstract

Multi-walled carbon nanotubes (MWCNT)-doped TiO2 thin films were synthesized by the dip-coating method. The obtained products were characterized by SEM, EDX, XRD, and UV-vis absorption spectroscopy. The XRD patterns showed the presence of anatase phase. Absorption spectrum of MWCNT-doped TiO2 revealed a red shift in the optical absorption edge due to carbon doping. The photocatalytic properties were investigated using methylene blue (MB) degradation under visible light (400-700 nm). MWCNT/TiO2 thin films exhibited significantly higher photocatalytic activity as compared to undoped TiO2 thin films due to reduction of the rate of electron-hole recombination by doping carbon. Photocatalytic activity studies with different light source (white light and blue light) indicated a significant enhancement in photocatalytic removal under white light irradiation.

Keywords

Article Title [Persian]

فعالیت فتو کاتالیستی نور مریی MWCNT/TiO2 با استفاده از تخریب متیلن بلو

Authors [Persian]

  • سمیرا محمد درویش 1
  • عبدالله مرتضی علی 1
  • سعیده رمضانی ثانی 2

1 گروه فیزیک، دانشکده فیزیک و شیمی، دانشگاه الزهرا، تهران، ایران

2 گروه فیزیک، دانشگاه آزاد اسلامی، واحد رودهن، رودهن، ایران

Abstract [Persian]

در این پژوهش، لایه­­های نازک دی اکسید تیتانیوم (TiO2) آلاییده شده با نانو لوله­های کربنی چند دیواره (MWCNT)، با استفاده از روش غوطه­ وری تهیه شدند. نمونه های به دست آمده توسط SEM و EDX و XRD و طیف­سنجی جذب UV-Vis مشخصه ­یابی شدند. تحلیل­های XRD حضور فاز آناتاز را نشان دادند. در طیف جذب MWCNT/TiO2 به دلیل آلایش با کربن انتقال لبه جذب به سمت ناحیه قرمز مشاهده شد. به منظور بررسی خواص فوتوکاتالیستی لایه ­ها، تخریب محلول متیلن بلو (MB) در نور مرئی (700-400 نانومتر) توسط کاتالیست MWCNT/TiO2  انجام شد. لایه­های نازک MWCNT/TiO2 فعالیت فوتوکاتالیستی بالاتری نسبت به لایه­ های نازک TiO2 خالص نشان دادند که ناشی از کاهش سرعت بازترکیب الکترون–حفره است. تخریب محلول متیلن بلو با منابع نوری مختلف (نور سفید و نورآبی) نشان داد که نمونه ­ها تحت تابش نورسفید فعالیت فوتوکاتالیستی بیشتری دارند.

Keywords [Persian]

  • نانو لوله های کربنی/دی اکسید تیتانیوم
  • فوتوکاتالیستی
  • نور مرئی
[1] R. Vinu and G. Madras, "Environmental remediation by photocatalysis ", Journal of the Indian Institute of Science, 90 (2010) 189.
[2] M. T. Nguyen, C. K. Nguyen, T. M. Phuong Vu, "A study on carbon nanotube titanium dioxide hybrids: experiment and calculation ", Advances in Natural Sciences: Nanoscience and Nanotechnology, 5 (2014) 1.
[3] B. Mull, L. Möhlmann and O. Wilke, "Photocatalytic degradation of toluene, butyl acetateand limonene under UV and visible light with titanium dioxide-graphene oxide as photocatalyst", Environments, 4 (2017) 1.
[4] Y. Huang, W. Ho, Sh. Lee, L. Zhang, G. Li, and J. C. Yu, "Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx", Langmuir, 24 (2008) 3510.
[5] M. M. Ballari, Q.L. Yu, H. J. H. Brouwers, "Experimental study of the NO and NO2 degradation by photocatalytically active concrete", Catalysis Today, 161 (2011) 175.
[6] Q. Duan, J. Lee, Y. Liu, and H. Qi, "Preparation and photocatalytic performance of MWCNTs/TiO2 nanocomposites for degradation of aqueous substrate", Journal of Chemistry, 2016 (2016) 1.
[7] N. Daneshvar, D. Salari, A. R. Khataee, "Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2", Journal of Photochemistry and Photobiology A: Chemistry, 62 (2004) 317.
[8] S. O. Hay, T. Obee, Z. Luo, T. Jiang, Y. Meng, J. He, S. C. Murphy and S. Suib, "The viability of photocatalysis for air purification", Molecules, 20 (2015) 1319.
[9] P. Pichat, J. Disdier, C. Hoang-Van, D. Mas, G. Goutallier, C. Gaysee, "Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis", Catalyst Today, 63 (2000) 363.
[10] J. Peral, D. F. Ollis, "Heterogeneous photocatalysis oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation", Journal of Catalysis, 136 (1992) 554.
[11] K. Woan, G. Pyrgiotakis and W. Sigmund, "Photocatalytic Carbon-Nanotube-TiO2 Composites", Advanced Materials, 21 (2009) 2233.
[12] A. M. Kamil, F. H. Hussein, A. F. Halbus, and D. W. Bahnemann, "Preparation, Characterization, and Photocatalytic Applications of MWCNTs/TiO2 Composite", International Journal of Photoenergy, 2014 (2014) 1.
[13] X. Li, X. Zou, Z. Qu, Q. Zhao, L. Wang, "Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method", Chemosphere, 83 (2011) 674.
[14] X. Zhang, L. Z. Zhang, T. F. Xie, D. J. Wang, "Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures", Journal of Physical Chemistry C, 113 (2009) 7371.
[15] B. Réti, K. Mogyorósi, A. Dombi, K. Hernádi, "Substrate dependent photocatalytic performance of TiO2/MWCNT photocatalysts", Applied Catalysis A: General, 469 (2014) 153.
[16] S. M. Lam, J. Ch. Sin, A. Z. Abdullah, A. R. Mohamed, "Photocatalytic TiO2/Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments", Fullerenes, Nanotubes, and Carbon Nanostructures, 22 (2014) 471.
[17] Zh. Zengxiu, Zo. Kehua, W. Feng, W. Qiong, "Experimental study on nitrogen-doped nano-scale TiO2 assisted process at low temperature", Modern Applied Science, 4 (2010) 95.
[18] W. Yan, Z. Jiwei, J. Zhenshen, and Z. Shunli, "Visible light photocatalytic decoloration of methylene blue on novel Ndoped TiO2", Chinese Science Bulliten 52 (2007) 2157.
[19] M. MeiGui, S. P. Chai, B. Q. Xu, A. R. Mohamed, "Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane, Solar Energy Materials & Solar Cells, 122 (2014) 183.
[20] Y. H. Tseng and B. K. Huang, "Photocatalytic Degradation of NOx Using Ni-Containing TiO2", International Journal of Photoenergy, 2012 (2012) 1.
[21] C. D. Valentin, E. FINAZZI, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini, and E.Giamello, "N-doped TiO2: Theory and experiment", Chemical Physics, 339 (2007) 44.
[22] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and A. Tage, "Visible-light photocatalysis in nitrogen-doped titanium oxide", Science, 293 (2001) 269.
[23] D. Wang, B. Yu, F. Zhou; C. Wang, and W. Liu, "Synthesis and characterization of anatase TiO2 nanotubes and their use in dye-sensitized solar cells", Materials Chemistry and Physics, 113 (2009) 602.
[24] S. U. M. Khan, M. Al-shahry, Jr. W. B. Ingler, "efficient photochemichal water splitting by a chemically modified n-TiO2 ", Science, 297 (2002) 2243.
[25] YH. Li, SG. Wang, JQ. Wei, XF. Zhang, CL. Xu, ZK. Luan, DH. Wu, BQ. Wei, "Competitive adsorption of Pb2+,Cu2+ and Cd2+ ions from aqueous solutions by multi walled carbon nanotubes", Carbon, 41 (2003) 2787.
[26] B. Pan, BS. Xing, " Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental Science & Technology, 42 (2008) 9005.
[27] W. D. Zhang, B. Xu, and L. Ch. Jiang," Functional hybrid materials based on carbon nanotubes and metal oxides", Journal of Materials Chemistry, 20 (2010) 6383.
[28] Y-J. Xu, Y. Zhuang, and X. Fu, "New Insight for Enhanced Photocatalytic Activity of TiO2 by Doping Carbon Nanotubes: A Case Study on Degradation of Benzene and Methyl Orange", Journal of Physical Chemistry C, 114 (2010) 2669.
[29] S. Sakthivel, H. Kisch, "Daylight photocatalysis by carbon-modified titanium dioxide", Angewandte Chemie International Edittion , 42 (2003) 4908.
[30] C. Xu, R. Killmeyer, M. L. Groy, S. U. M. Khan, "Photocatalytic effect of carbon- modified n-TiO2 nanopertides under visible light illumination ", Applied Catalysis B Environmental, 64 (2006) 312.
[31] C. M. liang, Z. F. jun, W-chun Oh, "Synthesis, characterization, and photocatalytic analysis of CNT/TiO2 composites derived from MWCNTs and titaniumsources",New Carbon Materials, 24 (2009) 159.
[32]M. L. Chen, F. J. Zhang, and W-Chun Oh, "Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene", Journal of the Korean Ceramic Society, 45 (2008) 651.
[33] S. P. Kim and H. C. Choi, "Preparation of Carbon-Nanotube-supported TiO2 for Enhanced Dye-degrading Photocatalytic Activity", Bulliten of the Korean Chemical Society, 36 (2015) 258.
[34] K. Dai, T. Peng, D. Ke and B. Wei, "Photocatalytic hydrogen generation using a nanocomposite of multi–walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation", Nanotechnology, 20 (2009) 125603.
[35] O. Akhavan, R. Azimirad, S. Safad, and M. M. Larijani, "Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents", Journal of Materials Chemistry, 20 (2010) 7386.
[36] T. Rojviroon, A. Laobuthee, and S. Sirivithayapakorn, "Photocatalytic Activity of Toluene under UV-LED Light with TiO2 Thin Films", International Journal of Photoenergy, 2012 (2012) 1.
[37] Wendong Wang, Philippe Serp, Philippe Kalck, Joaquim Luís Faria, "Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method", Journal of Molecular Catalysis A: Chemical, 235 (2005) 194.
[38] F. Bensouici, M. Bououdina, A. Iratni, M. Toubane, and R. Tala-Ighil, "Effect of Thickness on Photocatalytic Activity of TiO2 Thin Films", Progress in Clean Energy, 1 (2015)763.
[39] Y. Hua Chen and K. Jui Tu, "Thickness Dependent on Photocatalytic Activity of Hematite Thin Films", International Journal of Photoenergy, 2012 (2012) 1.
[40] A. Guillén-Santiago, S.A. Mayén, G. Torres-Delgado, R. Castanedo-Pérez, A. Maldonado, M. de la L. Olvera," Photocatalytic degradation of methylene blue using undoped and Ag-doped TiO2 thin films deposited by a sol–gel process: Effect of the ageing time of the starting solution and the film thickness", Materials Science and Engineering B, 174 (2010) 84.
[41] H. Arslan, Y. Barış Doluğan, A. Nur Ay, “Measurement of the Penetration Depth in Biological Tissue for Different Optical Powers", Sakarya University Journal of Science, 22 (2018) 1095.
[42] I. S. Sidorov, S. V. Miridonov, E. Nippolainen, and A. A. Kamshilin, "Estimation of light penetration depth in turbid media using laser speckles", Optics Express, 20 (2012) 13692.
[43] M. R. Islam and J. Podder, "Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor", Crystal Research and Technology, 44 (2009) 286.