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A tight binding approach based on the Bogoliubov de-Genes approach has 

been used to calculate the DC Josephson current for short junctions with 

respect to the superconducting coherence length with a lattice model for S-

GNR-S junctions. We calculate the phase, length, width, and chemical 

potential dependence at the Josephson junction and discuss the similarities and 

differences with regard to the theoretical and experimental results obtained for 

graphene. Regarding the calculations on graphene, using a lattice model, we 

convert the graphene honeycomb structure to a brick lattice structure that does 

not change the lattice topology. Then, by removing several atoms from the 

lattice, we create the simple vacancy defects in the brick lattice. Also we 

calculate the Josephson current with these vacancies.  
 

 

1 Introduction 
 

 Graphene, first discovered in 2004, is a thick atomic 

sheet of sp2 - bonded carbon atoms. Since then, 

researchers around the world have been interested in 

graphene for the interconnect application in submicron 

regions. Graphene is a semiconductor with zero band 

gap, phonon like 2D confined properties, linear energy 

dispersion, and a very high mobility of carriers               

�10��	/��	 at room temperature [1]. 

 Due to its zero energy gap, graphene cannot be used 

directly to make transistor devices, but it can be used 

for the logic applications. So, a further confinement of 

the electrons of graphene in one of the in plane 

directions will allow for broader applications. These 

graphene ribbons are strips of graphene with 

dimensions  less  than ten nanometers, so  it  is  called 

graphene nanoribbons (GNR) [1]. GNR can depending 

upon their termination style be two types of armchair 

and zigzag. The width of armchair GNR is decided by 

the number of hexagonal carbon rings, so it is 

indicated by dimer lines (Na) across the ribbon. 

Similarly the width of zigzag GNR is dependent on the 

number of zigzag chains (Nz) across the ribbon [2]. 

 These termination styles are one of the factors in 

determining electronic states of GNRs. According to 

the tight binding model, zigzag GNRs are metallic and 

armchair. GNRs that are either metallic or 

semiconducting are further dependent on their width 

[3]. Band structure calculations show that the armchair 

GNRs with ideal edges are semiconducting when the 

number of dimer lines is 3Na or (3Na+1), and when 

the number of dimer lines is (3Na+2) they are metallic. 

Zigzag GNRs are independent of N and have a 

metallic behavior [4]. The results of DFT calculation 
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show that armchair GNRs are semiconductors with 

energy gaps where their energy gap is inversely 

dependent on the GNR width [2].  

 Owing to the proximity effect, in contact of graphene 

with superconductor, a superconductor can also induce 

non zero pairing potential in the graphene. With 

having such graphene and superconductor hybrid 

structures, in particular the Andreev reflection taking 

place at the graphene-   superconductor interface, the 

subject was first studied theoretically by Titov and 

Beenakker [5], for a review on Andreev reflection in 

graphene see Ref [6]. Using a Dirac Bogoliubov de 

Genes (DBdG) formalism, they found that in a ballistic 

graphene, a Josephson current can flow at the Dirac 

point even in the limit of zero concentration of the 

carriers. In fact, the proximation of superconductor 

with graphene induces an unusual coherent 

superconducting order in the nearest layers of 

graphene in the interface which is often a result of the 

physical characteristic of graphene in the normal state. 

The Josephson effect in junctions SNS (S: 

superconductor, N: normal metal or semiconductor) 

occurs due to the phase coherence of electron and hole 

in the normal region. When an electron is scattered 

into a hole at an SN interface (Andreev reflection), it 

acquires a phase displacement proportional to the 

phase of the superconducting order parameter. Thus 

the electronic states of the SNS junction depend on the 

difference between the phase of two closely spaced left 

and right superconductors ( ϕ  ), which is the origin of 

the DC Josephson effect: I dF / d= − ϕ  (I: current; F: 

free energy). 

 Therefore, the DC Josephson effect is sensitive to the 

nature of electronic transport in the normal region, and 

we can expect that the Josephson current in a SNS 

junction shows some similar effects, such as the 

universal fluctuations of conductance and the 

conductance quantization, in mesoscopic systems. The 

normal region is of the mesoscopic size while the 

superconductors are very large and they are considered 

as bulk. In fact, the fluctuations of the critical current 

in dirty SNS junctions have been analyzed 

theoretically [7] and also observed experimentally [8].  

 For transport in the normal conductor, there must be 

present phase coherent and time reversal symmetry 

(TRS). In graphene, the Josephson’s effect can be 

investigated in the ‘relativistic’ regime [5], where the 

supercurrent is carried by Dirac electrons. It has also 

been shown experimentally that Josephson's effect in 

graphene is a robust effect and its robustness is linked 

to graphene’s unique electronic structure [9]. 

 Using theoretical calculations on the Josephson 

current passing through the graphene, a current – phase 

relationship is obtained as: 

I( ) cos( / 2) arctan h(sin( / 2))ϕ ∝ ϕ ϕ ,  

where a critical current depends inversely on the 

length of the junction L (L is the distance between two 

superconductors) [10]. Experimentally the proximity 

induced superconductivity in graphene was observed 

by Heersche et al [11] for first time and later by others 

[12-15] which is acquired by superconducting 

connections investigation in a graphene sheet which 

leads to transport properties of graphene. Some of the 

key findings in these investigations include the 

possibility of specular Andreev reflection, oscillations 

in the conductance of a superconductor-normal (SN) 

junction, and a finite Josephson current even at the 

Dirac point in a superconductor – normal- 

superconductor (SNS) junction. So far often in papers, 

the conventional s-wave superconducting pairing has 

been made; while only a little attention has been paid 

to the unconventional pairing that affects the 

transportation properties [16]. We calculate 

numerically the Josephson current for a metal armchair 

nanoribbon (A GNR) in brick lattice. To do this, we 

generalize the Furusaki method [19] for a honey comb 

lattice to a brick lattice. The advantage of the 

numerical method employed here is that we can 

examine the effect of impurities and point vacancy 

defects in different quantities and arrays. 

2 Theory 
 

 The Josephson junction is described by the 

Bogoliubov–de Genes equation [17] on the two 

dimensional tight binding model. The Josephson 

current is represented by the Matsubara Green function 

which is numerically calculated by using the recursive 

Green function method [18]. The advantage of the 

method is due to its wide applicability to various 

systems such as the clean (ballistic) junctions, the dirty 

(diffusive) junctions, and the junctions in the localized 

regime. Let us consider the SNS junction (Fig 1) on the 
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two-dimensional tight-binding model, where the length 

of the normal segment is 0La  and the width of the 

junction is ��� where ��	is the lattice constant.  

 For this simple two-dimensional lattice, the 

Hamiltonian is assumed to be: 

y
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y
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Where 
j,k ,c σ

 is an annihilation operator of an electron 

on site (j,k) with spin σ . Here, j is cells counter in 

horizontal direction and k is cells counter in vertical 

direction. t is a hopping matrix element and µ is the 

chemical potential. The system has wire geometry 

(meaning the width is limited) where the number of 

places in the transverse direction is 1yn +  and we take 

the number of unit cells in the horizontal direction for 

the normal region as ��. It is assumed that the order 

parameter 
j,k

∆  is in the left superconductor, in the 

region � ≤ 0  , as ∆�  , and in the right superconductor, 

in the region � ≥ �� + 1 , as R exp(i )∆ ϕ , where ϕ  is 

the phase factor.  

Josephson current is obtained using two - particle 

Green function as following: 

y
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Where < …. > means thermal average, β   is the 

inverse temperature, and  
n

G ( j, k; j , k )ω ′ ′  is the 

Nambu Green Function (2 2×  matrix) with the 

Matsubara frequency n Bk T(2n 1)ω = π + . The Green 

function satisfies the equation of motion:  

  

, ,
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n

n j k j k
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i H
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δ δ

ω
 ,(3) 

 

 

 

where we have 
, ,( )− += − + + −j k x x j kH t d d ε µ , and 

ed  is a hopping operator which shifts the site (j,k) by 

one lattice spacing in the e-direction. Equation (3) can 

be solved with the cursive Green function method [19]. 

As given in reference [19], the Green's function can be 

calculated separately for each region (the left 

superconductor, the normal region, the right 

superconductor). Then, the Green function of the 

connected system is obtained which is needed for 

calculating the Josephson current. 

 We start from the left superconductor (� ≤ 0) which is 

not connected to the normal region in the beginning 

(Fig 1).  

 

 

 

 

 

 

 

Figure 1. Schematics of the SNS junction. 

 

The Green function in the edge of the left 

superconductor is given by: 
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Where we have  

2 2

, ( ) ( )Ω = + ∆n L R n L Rω
, 

/ ( 2)= +m yq m nπ
, 

and 

 , ( ) , ( )arccos[ ( 2 cos ) / 2 ]± = − + ± Ωm L R h m n L R hp t q tµ
. 

Next we separate the normal region into cells in such 

a way that the cell j consists of the sits (j,k) 

(k=0,…….., ny) and attach the cells to the left 

superconductor one by one, see Fig 1.  

 

 

 To perform calculations on graphene, we can convert 

the graphene-shaped honeycomb lattice structure into a 

brick lattice structure which does not change the 

lattice topology [20] (Fig 2). In this model, the 

direction of each bond is aligned with two 

perpendicular axes. This transformation can be 

considered as a distorted honeycomb lattice under the 

influence of compression in �� direction together with 

extension in ��  direction. On the other hand, if we 

consider the energy dispersion relation for graphene 

which has a honeycomb shape and compare it with the 

relation obtained for the brick lattice, as given in 

reference [20], it can be seen that the same result has 

been obtained. The topology of brick-type lattice is 

still similar to the honeycomb lattice but with different 

lattice vectors. In addition, the probability of jump 

between two adjacent cells is independent of the shape 

of the lattice.  

 

 

 

 

 

 

Figure 2. Crystal structure of brick-type lattice that is a 

transformation from honeycomb lattice showing sub lattices A and 

B in the unit cell and the basis vector c. The primitive unit cell is 

defined by the primitive lattice vectors a1 and a2. 

 

 In Ref [19], for a square lattice, the hopping matrix 

from one cell to the adjacent cell (t) in the horizontal 

and vertical directions is the same, but by changing the 

lattice to a brick lattice, we define the hopping matrix 

from a cell to the adjacent cell in a horizontal direction

ht  and in a vertical direction vt , where is in the vertical 

direction as one in between (Fig 3). 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Schematic diagram of the superconductor – graphene 

nanoribbon - superconductor, in which the graphene nanoribbon 

has become a brick lattice. 

 In the Furusaki method, the middle region is 

considered a square lattice but in our work, with the 

deformation of the middle region, the Green's function 

in this region must be changed. We will generalize the 

relationships to the brick lattice by changing the 

Hamiltonian matrix given for each cell and changing 

the hopping matrix from one cell to the adjacent cell, 

as follows: 

 

n

n

n k ,k j

1
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H G ( j 1, k; j 1, k )H ]

′ω

−
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′ ′ ′− − −
                    , (5) 

����, �′ = "H� 0
0 −H�∗

&  

where 

	H� = −t()δ+,+,-� + δ+,+,.�/ + )ε1,+ −μ/δ+,+, , 

and 

 �2 = −34 51 0
0 −16. 

 

 Finally we attach the right superconductor to the semi-

infinite SN system. To this end we need the Green 

function for the right superconductor: 
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.(6) 

Then the Green function of the connected system is 

obtained from the following two equations:  
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The Josephson current is calculated from equations (2) 

and (7). 

 

3 Results and Discussion 
 

 In this section, we present the numerical results for 

Josephson current by using the lattice model that was 

introduced in the previous section. Figure 4 shows the 

dependence of the Josephson current on the width of 

the junction (W) and a little chemical potential value (

n
0.001evµ = ) for a metal armchair ribbon with a 

length of c cL 50a −=  (ac-c =0.142nm). When n 0µ →  , 

the available propagating modes decrease, where the 

results are in agreement with the results of Ref [21]. 

Josephson current has linear dependence on W and 

with increasing the band width, Josephson current also 

rises. This behavior is the result of a quasi-diffusion 

transport in a ballistic graphene [22]. By decreasing 

W/L, transmission of transverse modes from the 

normal region decreases and the current shows a 

uniform decrease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Curve of Josephson current in terms of ribbon width.  

 

 In the graphene-superconductor interface, edges states 

extend from one boundary to another along the 

interface and the Andreev reflection occurs. With 

widening of the graphene ribbon, edge states of 

electron and hole are also combined together. Thus, 

the probability of the Andreev reflection also 

increases. Figure 5 shows the dependence of the 

Josephson current on the chemical potential in the 

ribbon width c cW 86a −=   and the length of the 

junction c cL 50a −= . In fact, we have assumed in our 

calculations that superconducting regions are doped so 

that 78 ≫ 7:. As the chemical potential increases, the 

Josephson current also increases linearly. In other 

words, by decreasing nµ , the current also decreases; 

when	7: → 0, the available propagating modes 

decrease which is consistent with the prediction 

reported in Ref [23]. 

 In this section, we investigate the dependence of the 

Josephson current on the length of the junction (L) in 

the short junction region (< ≪ >	that

0

Fv
ξ =

∆

h
 ) which 

is shown in Fig 6.  

In the vicinity of the Dirac point, we can see 

oscillations in curve I in terms of L and that 

simultaneously the current decreases exponentially. 

 

 

 

 

(A) 
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Figure 5. Curve of Josephson current versus chemical potential in 

Josephson junction.  

 However, we cannot see the current dependence 

behaving as 
2

1 / L≈  which has been predicted in Ref 

[24] for	< ≪ >. It should be noted that an increase in 

the GNR's length causes an increase in the number of 

Andreev levels and hence decreases the current; 

because the number of Andreev bound states has a 

relation proportional to the length of the junction (L) 

[25].  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Curve of Josephson current versus length of junction in 

short junction region ( << ξL ). 

 

 Key information about processes that involve in 

Josephson current not only can be obtained by 

measuring the magnitude of the Josephson current but 

also by measuring the phase difference between two 

superconductors placed at both sides of the nano 

ribbon which is characterized by the Josephson current 

phase (CPR) relationship. Figure 7(a) shows the 

Josephson current as a function of the phase difference 

ϕ  for a short junction (< ≪ >) in three temperatures 

CT / T 0.4,0.53,0.7= , for c cL 50a −=  and 

c cW 68a −= . As seen from Fig 7 (a), by increasing the 

temperature, the maximum current is reduced.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Curve of Josephson current versus phase difference 

ϕ  for a short junction (< ≪ >) in three temperature region , 

CT / T 0.4,0.53,0.7= (respectively black  □   , red   ◯     and 

blue  △     ). (b) Phase – current relationship for Josephson 

junction for three ratios W/L=10, 1, 0.1 (respectively blue   △  , 

red  □  and black ◯  ). 

 At high temperatures, the current shows a simple 

sinusoidal dependence on the phase; while at low 

temperatures, the position of the maximum current, as 

a result of the asymmetry in the curves, moves very 

slight, slightly to the right. By following Ref [26], this 

(a) 

(b) 

(A) 

7?  (ev)  

(A) 
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asymmetry is defined by the relation

maxs (2 / ) 1= φ π −  that @AB�  is the maximum current 

position. 

 Figure 7 (b) also shows the phase dependence of the 

Josephson current for a metal armchair ribbon for three 

ratios of W / L = 10, 1, 0.1. For a short Josephson 

junction, the relationship of the current in terms of the 

phase difference is sinusoidal-shaped, CI( ) I sinφ = φ , 

similar to a tunneling Josephson junction. It is 

expected that at this level of junction length, 

transmission probabilities are very small and graphene 

ribbons behave like a tunneling junction [27]. As 

shown in Fig 6 (b), whatever the ratio of the width to 

the ribbon length is greater, the maximum current is 

also greater, which is the same as the result obtained 

from curve 4, in which it was shown that I has linear 

dependence on W / L. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Curve of Josephson current versus the number of 

vacancies in a graphene nanoribbon lattice, which shows that 

Josephson current decreases with the number of vacancies. 

 

 Now, after ensuring our computational approach, by 

removing an atom from the lattice, we create a simple 

vacancy in the brick lattice. When there is a vacancy in 

the ribbon, the number of conducting channels 

decreases. The appearance of these vacancies changes 

the green function of graphene; because, removing 

each atom, a vertical hopping ( vt ) and two horizontal 

hopping ( ht ) are eliminated. This change affects the 

Josephson's current, and, as shown in Fig 8, the 

Josephson current decreases with increasing the 

number of vacancies in the lattice. 

 

 

 

 

 

 

 

 

 

 

Figure 9. curve of Josephson current versus the position of 

vacancies in a graphene nanoribbon lattice, when the vacancies 

move from center to edge of ribbon. 

 Then we consider a graphene nanoribbon lattice with 

5 vacancies, where the position of these vacancies 

moves from center to edge of the ribbon. We study the 

Josephson current in the appearance of these 

vacancies. Figure 9 shows the Josephson current in 

terms of the position of these vacancies. As seen in Fig 

9, the Josephson current has the lowest value when the 

vacancies are in the middle of the ribbon and as they 

move towards the edge of the ribbon, it increase. 

 By removing one atom from the lattice of the 

graphene ribbon, three �C� bonds are broken, creating 

three dangling bonds at the neighboring carbon atoms. 

These dangling bonds tend to spread towards the 

neighboring carbon atoms of the ribbon in order to 

overlap with electronic states of their neighbors where 

their energy is less. Hence, the electronic wave 

functions near the created vacancy are affected. In 

other words, some localized states appear in the 

vicinity of the vacancy and affect the π bonds of the 

ribbon. Therefore, the effect of the vacancy on the π 

bands, which are responsible for conduction near the 

Fermi energy and hence the Josephson current, is 

significant. If the localized vacancy states are in the 

middle of   the ribbon, their effect on whole electronic 

wave function will be maximum. When the vacancy is 

moved towards one edge, the effect of the localized 

vacancy states near the other edge will decrease, due to 

the distance between the vacancy and the increase of 

the other edge of the ribbon. 
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