Hydrogen treatment of TiO2 nanoparticles by DC plasma

Document Type : Original Article

Authors

1 Supermaterials Research Laboratory (SRL), Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran, IRAN

2 Nano-physics Research Laboratory, Department of Physics, University of Tehran, North Karegar Ave., P.O. Box 14395-547, Tehran, IRAN

Abstract

In this work structural defects were created in P25-TiO2 nanoparticles by using hydrogen DC plasma treatment in different temperatures and exposure times. X-Ray diffraction measurements show that the structure of TiO2 remains unchanged after hydrogenation. Diffuse reflectance spectroscopy measurements demonstrated band gap of TiO2 was not changed considerably by the hydrogenation. However, by applying the hydrogen plasma for 40 min at temperature of 350 °C photocatalytic activity of TiO2 nanoparticles enhances. No more change was observed in the photocatalytic activity of the samples with plasma exposure time more than 40 min. Photoluminescence analysis shows the sample prepared at 350 °C has a large amount of defects which have been created by the plasma treatment. It seems both, structural defects and hydrogen doping in the samples are important for more efficient photocatalytic behavior of TiO2 nanoparticles.

Keywords

Main Subjects

Article Title [Persian]

هیدروژن دهی نانوذرات TiO2 با پلاسمای مستقیم

Authors [Persian]

  • مائده مشهد بانی 1
  • محمدی زاده 1
  • یاسر عبدی 2

1 گروه فیزیک، دانشگاه تهران، کد پستی 547-14395، تهران، ایران

2 گروه فیزیک، دانشگاه تهران، کد پستی 547-14395، تهران، ایران

 
[1] A. Fujishima, K. Honda, Nature 238 (1972) 37.
[2] P. J. Cameron, L. M. Peter, J. Phys. Chem. B 107 (2003) 14394.
[3] M. Okuya, K. Nakade, S. Kaneko, Sol. Energy. Mate. Sol. Cell. 70 (2002) 425.
[4] M. Okuya, K. Nakade, D. Osa, T. Nakano, G. R. A. Kumara, S. Kaneko, J. Photochem. Photobio. A: Chemistry 164 (2004) 167.
[5] M. Okuya, K. Shiozaki, N. Horikawa, T. Kosugi, G.R.A. Kumara, J. Madarász, S. Kaneko, G. Pokol, Solid State Ionic 172 (2004) 527.
[6] C. Natarajan, N. Fukunaga, G. Nogami, Thin Solid Films 322 (1998) 6.
[7] M. Kazemi, M. R. Mohammadizadeh, Chem. Engineer. Res. Des. 90 (2012) 1473; M. Kazemi, M. R. Mohammadizadeh, Thin Solid Films 519 (2011) 6432.
[8] M. Kazemi, M. R. Mohammadizadeh, Appl. Surf. Sci. 257 (2011) 3780; A. A. Ashkarran, M. R. Mohammadizadeh, Mater. Res. Bull. 43 (2008) 522.
[9] C. Wen, D. Hua, T. Jun-ying, A. Ji-Mei, Trans. Nonferrous Met. Soc. China 16 (2006) 728.
[10] Y. Zhu, Li. Zhang, W. Yao, L. Cao, Appl. Surf. Sci. 158 (2000) 32.
[11] D. Li, H. Haneda, S. Hishita, N. Ohashi, Chem. Mater. 17 (2005) 2588.
[12] C. Huang, L. Chen, K. Cheng, G. Pan, J. Mol. Catal. A: Chemical 261 (2007) 218.
[13] M. Chekini, M.R. Mohammadizadeh, S.M. Vaez Allaei, Appl. Surf. Sci. 257 (20117179; S. Kimyagar, M. R. Mohammadizadeh, Euro. Phys. J. Appl. Phys. 61 (2013) 10303.
[14] W. P. Chen, Y. Wang, H. L. Chan, Appl. Phys. Let. 92 (2008) 112907; S. Hidari, M. R. Mohammadizadeh, M. Mahjour-Shafiei, M. M. Larijani, M. Malek, Appl. Phys. A 121 (2015) 149; M. R. Mohammadizadeh, M. Bagheri, S. Aghabagheri, Y. Abdi, Appl. Surf. Sci. 350 (2015) 43.
[15] X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 331 (2011) 746; M. Sotudeh, M. Abbasnejad, M.R. Mohammadizadeh, Euro. Phys. J. Appl. Phys. 67 (2014) 30401; M. Sotudeh, S. J. Hashemifar, M. Abbasnejad, M.R. Mohammadizadeh, AIP Advances 4 (2014)  027129.
[16] C. Sun ,Y. Jia , X. Yang , H. Yang, H. G. Yang, X. Yao, G. Lu, A. Selloni, S. C. Smith, J. Phys. Chem. C115 (2011) 25590.
[17] F. Herkoltz, E. V. Lavrov, J. weber, Phys. Rev. B: 83 (2011) 235202.
[18] C. Kilic, A. Zunger, Appl. Phys. Lett. 81 (2002) 73.
[19] H. Liu, H. T. Ma, X. Z. Li, W. Z. Li, M. Wu, X. H. Bao, Chemosphere 50 (2003) 39.
[20] T. Ihara, M. Miyoshi, J. Mater. Sci. 36 (2001) 4201.
[21] K. Suriye, B. Ch. Satayaprasert, P. Praserthdam. Appl. Surf. Sci. 255 (2008) 2759.
[22] V. Henrich, R. L. Kurtz, Phys. Rev. B 23 (1981) 6280.
[23] G. Lu, A. Linsebigler, J.T. Yatase, J. Chem. Phys. 98 (1994) 11733.
[24] W. Gopel, J.A. Anderson, D. Frankel, M. Jaehnig, K. Phillips, J.A. Schafer, G. Rocker, Surf. Sci. 139 (1984) 333.
[25] J.M. Pan, B.L. Maschoff, U. Diebolt, T.E. Madey, J. Vac. Sci. Technol. A 10 (1992) 2470.
[26] Q. Zhong, J. M.  Vohs, D. A. Bonnell, Surf. Sci. 274 (1992) 35.
[27] Z. Zhang, S. P. Jeng, V. E. Henrich, Phys. Rev. B 43 (1991) 12004.
[28] Q. Zhong, J. M. Vohs, D. A. Bobbell, J. Am. Ceram. Soc. 76 (1993) 1137.
[29] W. Gopel, G. Rocker, R. Feirabend, Phys. Rev. B 28 (1983) 3427.
[30] V. E. Hemrich, G. Dresselhaus, H. Zeiger, Phys. Rev. Lett. 36 (1976) 1335.
[31] A. N. Shultz, W. Jang, W. M. Hetherington, D. R. Baer, L. Q. Wang, M. H. Engelhard, Surf.  Sci. 339 (1995) 114.
[32] Y. K. Chae, S. Mori, M. Suzuki, Thin Solid Films 517 (2009) 4260.
[33] T. Leshuk, R. Parviz, P. Evert, H. Krishakumar, R.A. Varin, F. Gu, Appl. Mater. Interf. 5 (2013) 1892.
[34] U. Diebold, Surf. Sci. Reports 48 (2003) 53.
[35] R. A. Spurr, H. Myers, Analyt. Chem. 29 (1957) 760.
[36] X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, J. Phys. Chem. C 116 (2012) 22619.
[37] R. Trejo-Tzab, J. J. Alvarado-Gil, P. Quintana, Top Catal. 54 (2011) 250.
[38] G. Zhu, T. Lin,  X. Lü, W. Zh, C. Yang, Z. Wang, H. Yin, Z. Liu, F. Q. Huang, J. Lin, J. Mater. Chem. A 1 (2013) 9650.
[39] X. Chunxiang, X. Quinghua, Z. Yuan, C. Yiping, B. Lang, Z. Bing, G. Ning, Nanotechnology 13 (2002) 47.
[40] Y. Zhang, J. Li, J. Wang, Chem. Mater. 18 (2006) 2917.
[41] W. Dong, G. Pang, Z. Shi, Y. Xu, H. Jin, R. Shi, J. Ma, S. Feng, Mater. Res. Bull. 39 (2004) 433.
[42] N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99 (1995) 16646.
[43] C. Di Valentin, G. Pacchioni, J. Phys. Chem. C 113 (2009) 20543.